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Esercizio 1 
Si consideri il sistema non lineare 
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1.1 Si verifichi che ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

x  è uno stato di equilibrio corrispondente all’ingresso 

costante 1=u .  
 
1.2 Si scrivano le equazioni del sistema linearizzato intorno a tale stato di equilibrio.  
 
1.3 Si discutano le proprietà di stabilità, osservabilità e raggiungibilità del sistema 
linearizzato. 
 
1.4. Si calcoli l’espressione analitica della risposta del sistema linearizzato allo 
scalino unitario. 

 
SOLUZIONE 
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 e quindi x è di equilibrio.  
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1.3 Quindi con [ ]11,
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è asintoticamente stabile, il sistema linearizzato è completamente raggiungibile (in 
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ABB  ha rango massimo) e infine il sistema linearizzato non è 

completamente osservabile (in quanto ⎥
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 ha rango 1).  

1.4 La funzione di trasferimento del sistema linearizzato è: 
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BAsICsG  e quindi la risposta allo scalino è: 
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1.5 Esercizio 2 
Si consideri il sistema retroazionato in figura 
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2.1 Si ponga α=0 e si traccino i diagrammi di Bode asintotici del modulo e della fase della 
risposta in frequenza associata a L(s)=R(s)G(s) e si calcoli in margine di fase. 

 

SOLUZIONE 
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La pulsazione critica e’ di poco inferiore a 0.5 r/s e il margine di fase è di circa 40 gradi.  
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2.2 Si discuta la stabilità in anello chiuso del sistema in funzione del parametro α.  

 

SOLUZIONE 

 

La nuova L(s) è:  
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caratteristico del sistema ad anello chiuso che è il numeratore di 1+L(s), cioè  
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Applicando il criterio di Routh Hurwitz si scrive la tabella 
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Dove  
α

αααβ
5.02
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In conclusione α > −1.  



Esercizio 3 

Si faccia riferimento al sistema retroazionato in figura.  
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Si ricavi R(s) in modo tale che: 
 

- si abbia errore nullo a transitorio esaurito quando dR=0 e yo(t)=sca(t) 
- il margine di fase sia almeno 60° 
- la pulsazione critica sia almeno di 0.5 r/s 
- il disturbo in retroazione sia attenuato di almeno 20 db quando dR(t)=sin(ωt), 

ω>50r/s  
 
SOLUZIONE 
Per la regolazione a zero dell’errore e necessario che R(s) abbia un integratore. La 
soluzione più semplice è poi quella di un PI: 
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 con μ opportuno, ad esempio μ=0.1  
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Esercizio 4 
Si consideri il sistema retroazionato a tempo discreto 
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Si ricavi una descrizione in variabili di stato del sistema G1(z) compatibile con la risposta 
y(k) ad uno scalino unitario yo(k) del tipo: y(0)=0, y(1)=2, y(k)=3, k≥3.  
 
 
 
SOLUZIONE 
 
Chiamiamo F(z) la funzione di trasferimento da yo a y, cioè:  
 

)()(1
)(

)(
21

1

zGzG
zG

zF
+

= . Dai dati risulta che  

 

)1(
)5.0(2

1
3232.......332

1
)()( 2

0
232 −

+
=

−
+=+=+++=

−
= ∑

∞

=

−

zz
z

z
z

zz
z

zzzzzz
zzFzY

k

k  

 

e quindi  2
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=  che è appunto un sistema FIR. Quindi  
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Esercizio 5 
 
Si faccia riferimento all’esercizio 2, con α=0.  Si voglia realizzare R(s) con un regolatore 
digitale attraverso il metodo di Tustin. Si scelga il periodo di campionamento in maniera 
tale che il margine di fase del sistema degradi al più di 5 gradi. Si scriva poi la R(z) 
corrispondente.  
 
 
SOLUZIONE 
Il margine di fase è di quaranta gradi. 5 gradi corrispondono a π/36 radianti. Il degrado di 
margine di fase con un periodo di campionamento T è di circa ωcT/2, dove ωc è di circa 
0.5 e quindi il degrado è T/4. Quindi T/4 < π/36 significa T< π/9. La R(z) si ottiene 

sostituendo a s in R(s) l’espressione 
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