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I. Esercizio 1

Si consideri il sistema nonlineare

ẋ1(t) = −x1(t)2 − x2(t)x3(t) + u(t)

ẋ2(t) = x3(t)2 − 2x2(t)− x3(t)

ẋ3(t) = −x3(t)2 + 2x2(t) + u(t)

• Si ricavino i due stati di equilibrio x̄ corrispondenti all’ingresso u(t) = ū = 1.
• Si discuta la stabilità degli stati di equilibrio.

=========================SOLUZIONE=============================
Ci sono due punti di equilibrio, segnatamente

x̄[1] =

 1
0
1

 , x̄[2] =

 −1
0
1


ai quali corrispondono le matrici dinamiche del dei sistemi linearizzati

A[1] =

 −2 −1 0
0 −2 1
0 2 −2

 , A[2] =

 2 −1 0
0 −2 1
0 2 −2


Quindi x̄[1] è asintotimebnte stabile, mentre x̄[2] è instabile.
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II. Esercizio 2

Si consideri il sistema

ẋ(t) =

[
0 1
−2 −2

]
x(t) +

[
0
1

]
u(t)

y(t) =
[

1 −1
]
x(t)

• Si ricavi la funzione di trasferimento e si calcolino gli zeri e poli
• Se ne tracci il grafico qualitativo ponendo in evidenza il tempo di assestamento, la pulsazione e smorzamento delle

eventuali oscillazioni, il valore iniziale, il valore finale e il valore iniziale della derivata).
• Si calcoli l’espressione analitica della risposta y(t) al punto precedente, e

=========================SOLUZIONE=============================
La funzione di trasferimento si calcola facilmente (il sistema è in forma canonica di controllo):

G(s) =
1− s

s2 + 2s+ 2
=

1− s
(s+ 1)2 + 1

C’è uno zero (finito) in s = 1 e due poli complessi coniugati in s = −1± j.

Inoltre

Y (s) = G(s)/s =
0.5

s
− 10.5s+ 2

(s+ 1)2 + 1
=

0.5

s
− 1.5

(s+ 1)2 + 1
− 0.5(s+ 1)

(s+ 1)2 + 1

col che
y(t) = 0.5− 1.5e−tsin(t)− 0.5e−tcos(t)

Il valore finale è G(0) = 0.5, il valore iniziale è lims→∞G(s) = 0 della derivata è lims→∞ sG(s) = −1, smorzamento
1/
√

2, pulsazione naturale
√

2, pulsazione delle oscillazioni 1r/s, periodo 2π.
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Figura 1. Risposta allo scalino
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III. Esercizio 3

Si consideri il sistema retroazionato in figura, dove
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Figura 2. Figura dell’esercizio 3

G(s) =
10(1− s)
(1 + s)2

, R(s) =
α

s

• Si studi la stabilità del sistema retroazionato in funzione di α > 0 utilizzando il criterio di Bode.
• Si disegni il luogo delle radici per α > 0.

=========================SOLUZIONE=============================
Sia ωc la pulsazione critica. Il margine di fase è

φm = π/2− 2atan(ωc)

Quindi per la stabilità occorre e basta che ωc < tan(π/6). D’altra parte ωc soddisfa

10α

ωc
√

1 + ω2
c

= 1

e quindi α <
tan(π/6)

√
1+tan(π/6)2)

10 = 1/15.
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Figura 3. Luogo delle radici per α > 0
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IV. Esercizio 4

Si consideri il sistema in figura, dove

C(z) 
y(k) 

G(z) 

u(k) 

Figura 4. Figura dell’esercizio 4

G(z) =
1

z
, C(z) =

z − α
z

sono le funzioni di trasferimento di due sistemi a tempo discreto.

• Si studi la stabilità asintotica del sistema in funzione di α.
• Si studi la stabilità BIBO (da u a y) in funzione di α.
• Si studi la raggiungibilità da u in funzione di α.
• Si studi l’osservabilità da y in funzione di α.

=========================SOLUZIONE=============================
Il polinomio caratteristico è:

z2 − z + α

e quindi il sistema è asintoticamente stabile per α ∈ (0, 1).
La funzione di trasferimento è:

G(z) =
z2

z2 − z + α

Eventuali cancellazioni si hanno solo per z = 0, chè è un punto di stabilità, quindi il sistema è BIBO stabile per
α ∈ (0, 1). Per la raggiungibilità dobbiamo vedere se ci sono zeri di C(z) che cancellano poli di G(z). In effetti ciò
avviene per α = 0. Il sistema + raggiungibile da u per α 6= 0.

Per l’osservabilità dobbiamo vedere se ci sono zeri di G(z) che cancellano poli di C(z). Ciò non avviene. Il sistema
è osservabile da y per ogni α.
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Figura 5. Figura dell’esercizio 5

V. Esercizio 5

Si consideri il sistema in figura, dove i due convertitori operano in fase e sincronia con periodo T = 1 e

G(s) =
µ

s
, R∗(z) =

1

z

• Si studi la stabilità del sistema ibrido retroazionato in funzione di µ > 0.
• Ponendo µ = 0.25 si ricavi l’espressione analitica della risposta y∗(k) quando il segnale di riferimento è uno scalino

unitario.

=========================SOLUZIONE=============================
Il sistema a segnali campionati corrispondente a G(s) è

G∗(z) =
T

z − 1
=

1

z − 1
.

Quindi il polinomio caratteristico del sistema retroazionato è:

z2 − z + µ

C’è stabilità per µ ∈ (0, 1).
Ponendo µ = 0.25 la funzione di trasferimento dal riferimento all’uscita è:

F ∗(z) =
0.25

(z − 0.5)2

Quindi

Y ∗(z) =
0.25z

(z − 1)(z − 0.5)2
=

z

z − 1
− z

z − 0.5
− 0.5z

(z − 0.5)2

e
y∗(k) = 1− (0.5)k − 0.5k(0.5)k, k ≥ 0


