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I. Esercizio 1

Si consideri il sistema 
ẋ1 = ex1x2 − x1ex2 + u

ẋ2 = −ex1x1 − x2e−x2 + u

y = ex1 + ex2

• Si trovi l’equilibrio x̄ corrispondente a u = 0 e si ricavi l’uscita di equilibrio ȳ.

• Si studi la stabilità di x̄.

• Si scriva la funzione di trasferimento del sistema linearizzato rispetto a (x̄, ū, ȳ).

SOLUZIONE:

• Ponendo le derivate degli stati a zero si ottiene che il punto di equilibrio è

x̄ = 0, ū = 0, ȳ = 2 .

• Per discutere la stabilità asintotica linearizziamo il sistema nell’intorno di (x̄, ū). Le matrici del sistema linearizzato
sono

A =

[
−1 1
−1 −1

]
, B =

[
1
1

]
, C = [1 1], D = 0 .

Il polinomio caratteristico è s2 + 2s+ 2, quindi x̄ è un punto di equilibrio asintonticamente stabile.
• La funzione di trasferimento del sistema linearizzato rispetto a (x̄, ū, ȳ) è

G(s) =
2(s+ 1)

s2 + 2s+ 2
.
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II. Esercizio 2

Si consideri il sistema in figura dove

𝑅(𝑠) 𝐺(𝑠)
𝑢 𝑦

𝐹(𝑠)

𝑣

ℎ

Figura 1. Figura dell’esercizio 2

G(s) =
1

s+ 1
, F (s) =

−s
s+ α

, R(s) =
β

s
, β 6= 0 .

• Si scriva il sistema in spazio di stato {
ẋ = Ax

y = Cx .

• Si studi la stabilità interna in funzione di (α, β).

• Si studi l’osservabilità del sistema in funzione di (α, β).

SOLUZIONE:

• Si denotino con x1, x2, x3 le variabili di stato di G, F, R, rispettivamente. Notando che

F (s) = −1 +
α

s+ α
, u = v + h .

si ha che {
ẋ1 = −x1 + u

y = x1
,

{
ẋ2 = −αx2 + αy

h = x2 − y
,

{
ẋ3 = βy

v = x3 .

Il sistema si può quindi scrivere come

ẋ =

−2 1 1
α −α 0
β 0 0

x
y = [1 0 0]x .

• Il polinomio caratteristico è s3 + (2 + α)s2 + (α − β)s − βα, da cui, per il criterio di Routh, si ricava che si ha
asintotica stabilità per −2 < α < 0, β > 0.

• Il sistema è osservabile per α 6= 0.
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III. Esercizio 3

Si consideri il sistema retroazionato in figura dove

𝑅(𝑠) 𝐺(𝑠)
𝑦0 𝑢 𝑦

𝑑𝑅

𝐻(𝑠)

𝑑

Figura 2. Figura dell’esercizio 3

G(s) =
1

(s+ 1)(s+ 10)
, H(s) =

1

s
, d(t) = sca(t), y0(t) = sca(t), dR(t) = sin(100t) .

• Si ricavi R(s) in modo tale che l’errore a transitorio esaurito sia minore in valore assoluto di 0.1, che il margine
di fase sia almeno 60 gradi e la pulsazione critica sia non inferiore a 1 rad/s.

SOLUZIONE:

• Si noti che per avere l’errore a transitorio esaurito minore in valore assoluto di 0.1 a fronte dello scalino della
rampa e della sinusoide è necessario introdurre un integratore e il guadagno d’anello deve essere

1

0.1µR
+ |L(j100)| < 0.1 .

Imponendo che |L(jω)| < 0.01 in ω = 100, si ha µR > 111.11. Per soddisfare le specifiche scelgo

R(s) =
200(s+ 1)(1 + s10)

s(1 + s100)
,

con cui ho

L(s) =
20(1 + s10)

s(1 + s100)(1 + s0.1)

margine di fase φm = 76.3 gradi e pulsazione critica ωc = 1.96 rad/s.
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IV. Esercizio 4

Si consideri il sistema in figura

𝐺(𝑧)
𝑢(𝑘) 𝑦(𝑘)

Figura 4. Figura dell’esercizio 4

dove u(k) = sca∗(k) e y(0) = 0, y(1) = 2, y(2) = −3, y(k) = 1, k ≥ 3.

• Si ricavi G(z).

SOLUZIONE:

• Si noti che

Y (z) =
2

z
− 3

z2
+

∞∑
k=3

z−k

=
2

z
− 3

z2
+

z

z − 1
− 1− 1

z
− 1

z2

=
2z2 − 5z + 4

z2(z − 1)
.

Dal momento che G(z) = F (z)
1−F (z) e

F (z) = Y (z)
(z − 1)

z
=

2z2 − 5z + 4

z3

allora si ha

G(z) =
2z2 − 5z + 4

(z − 1)(z2 − z + 4)
.
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V. Esercizio 5

𝑅∗(𝑧) 𝐺(𝑠)
𝑦0 𝑒∗(𝑘)

𝑍𝑂𝐻

𝑇

𝑦

Figura 5. Figura dell’esercizio 5

Si consideri il sistema in figura, dove i convertitori sono in fase e sincroni (periodo T ) e inoltre

G(s) =
1

s2
.

• Si ricavi il tempo di campionamento T e il regolatore digitale R∗(z) in modo tale che l’equivalente del sistema di
controllo dal punto di vista analogico abbia margine di fase φm ≥ 30 gradi e pulsazione critica ωc ≥ 1 rad/s.

SOLUZIONE:

• Se scelgo il regolatore analogico

R(s) =
s+ 1

1 + 0.1s
,

il sistema equivalente dal punto di vista analogico avrà la funzione d’anello

L(s) = e−s
T
2

s+ 1

s2(1 + 0.1s)
,

e la pulsazione critica con ωc ' 1. Il margine di fase è

φm '
π

4
− T

2
>
π

6

da cui
T <

π

6
' 0.5 s .

Scelgo T = 0.1 s (che vuol dire 40 campioni nel tempo di assestamento di circa 4 s) e utilizzando il metodo di

Tustin (s = 2(z−1)
T (z+1) ) ottengo

R∗(z) =
21z − 19

3z − 1
.


