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1 ESERCIZIO 1

Si consideri il sistema nonlineare in Fig. 1, dove

G(s) =
1

(s+ 1)3

mentre f(y) è la caratteristica nonlineare

f(y) = αy + y2

cioè p(t) = f(y(t)) = αy(t) + y(t)2.

G(s)
y(t)u(t)v(t)

f(y)
p(t)

Figure 1: Figura dell’Esercizio 1

1.1 Si scriva una realizzazione in spazio di stato di G(s) (ingresso u, uscita y) in forma canonica
di controllo.

1.2 Si scrivano le equazioni del sistema nonlineare (ingresso v, uscita y) in forma normale.

1.3 Si calcolino gli equilibri dello stato corrispondenti all’ingresso costante v = 0, in funzione di α.

1.4 Si studi la stabilità asintotica di tali equilibri in funzione di α.
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SOLUZIONE ESERCIZIO 1
La realizzazione in forma canonica di controllo di G(s) è:

ẋ1 = x2

ẋ2 = x3

ẋ3 = −x1 − 3x2 − 3x3 + u

y = x1

Essendo u = v − f(y) = v − αy − y2 = v − αx1 − x21 risulta

ẋ1 = x2

ẋ2 = x3

ẋ3 = −x1 − 3x2 − 3x3 − αx1 − x21 + v

y = x1

Con v = 0 abbiamo due stati di equilibro

x̄[1] =

 0
0
0

 , x̄[2] =

 −(1 + α)
0
0


Linearizzando abbiamo le due matrici dinamiche corrispondenti (si noti che sono in forma com-
pagna):

A[1] =

 0 1 0
0 0 1

−1− α −3 −3

 , A[2] =

 0 1 0
0 0 1

1 + α −3 −3


e quindi i due polinomi caratteristici:

p[1](s) = s3 + 3s2 + 3s+ 1 + α, p[2](s) = s3 + 3s2 + 3s− 1− α

Applicando il criterio di Routh Hurwitz concludiamo che x̄[1] è asintoticamente stabile per −1 <
α < 8 mentre x[2] è asintoticamente stabile per −10 < α < −1.
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2 ESERCIZIO 2

Si consideri in Fig. 2 la risposta allo scalino unitario di un sistema del secondo ordine con funzione
di trasferimento

G(s) =
µ(1 + sτ)

(1 + sT )2

2.1 Si ricavino i parametri µ, τ , T , considerando che y(∞) = 1, ẏ(0) = −1 e il tempo di assesta-
mento Ta1 ' 6.
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Figure 2: Seconda figura dell’Esercizio 2

2.2 Si consideri il sistema retroazionato in Fig. 3 e si studi a stabilità in funzione di ρ utilizzando il
luogo delle radici, il polinomio caratteristico del sistema ad anello chiuso, il criterio di Nyquist. [ Si
disegni in un foglio separato il luogo delle radici - diretto ed inverso - e il diagramma
di Nyquist].

ρ G(s)

Figure 3: Figura dell’Esercizio 2
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SOLUZIONE ESERCIZIO 2
Dal grafico si evince che T > 0 (il sistema è asintoticamente stabile). Inoltre ha guadagno unitario
(y(∞) = µū = 1. Da ẏ(0) = −1 si ha −1 = τ/T 2. Infine dal empo di assestamento (circa 6 volte
la costante di tempo dominante T ) abbiamo T = 1. In conclusione

G(s) =
1− s

(1 + s)2

Il polinomio caratteristico del sistema in anello chiuso è:

(1 + s)2 + ρ(1− s) = s2 + 2s+ 1 + ρ− ρs = s2 + s(2− ρ) + 1 + ρ

cole che il sistema retroazionato è asintoticamente stabile per

−1 < ρ < 2

Figure 4: Luogo radici per ρ > 0 (a sinistra) e ρ > 0 (a destra)

Per ρ < 0 si vede che una radice diventa nulla per ρ = −1. Per ρ > 0 due radci sono sull’asse
immaginario per ρ = 2.

Figure 5: Diagramma di Nyquist per r ρ = 1

Il punto in cui il diagramma attraversa l’asse reale con fase −π si calcola con l’equazione

arg(G(jω) = −3atan(ω) = −π

cioè ωπ =
√

3, a cui corrisponde G(jωπ) = −0.5. Inoltre G(0) = 1. Quindi il sistema retroazionato
(zero giri) è asintoticamente stabile se e solo se −1 < ρ < 1/0.5 = 2.
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3 ESERCIZIO 3

Si consideri il sistema di controllo in Fig. 6 dove

Figure 6: Figura dell’Esercizio 3

G(s) =
0.1

(0.2s+ 1)(s+ 1)

e n(t) = 0, v(t) = 0. Progettare un regolatore R(s) tale che:

• il modulo dell’errore a transitorio esaurito a fronte di yo(t) = ±10sca(t) sia |e∞| = 0

• il modulo dell’errore a transitorio esaurito a fronte di d(t) = sin(ωt) con 0.05 ≤ ω ≤ 0.1 sia
|e∞| ≤ 0.1

• la risposta a uno scalino unitario di riferimento abbia un tempo di assestamento Ta1 ≤ 10sec
e una sovraelongazione massima S% ≤ 5%

5



SOLUZIONE ESERCIZIO 3
La G(s) corrisponde a un sistema asintoticamente stabile, tipo 0 con guadagno statico G(0) = 1.
Dalle specifiche richieste si ha che:

• Per garantire |e∞| = 0 a fronte di un ingresso di riferimento scalino L(s) dovrà essere almeno
tipo 1, allora:

R1(s) = µ/s

• Per garantire una sovraelongazione massima S% ≤ 5% , è possibile fissare φm > 75◦. Allora
F (s) ha un polo dominante reale e costante di tempo τ ≈ 1/ωc.

• Il tempo di assestamento di un sistema del primo ordine è Ta ≈ 5/τ , allora la pulsazione
critica della L(s) deve essere:

ωc ≥ 0.5rad/s

• La funzione di trasferimento dal disturbo D(s) al errore E(s) è

E(s)

D(s)
= −S(s)

Dalla specifica precedente si sa che per l’intervallo 0.05rad/s ≤ ω ≤ 0.1rad/s, la funzione di
sensitività si può approssimare come

|S(jω)| ≈ 1/|L(jω)|

allora per garantire |e∞| ≤ 0.1, la condizione sulla funzione di anello risulta

|L(jω)| ≥ 1/0.1 = 10(20dB), per 0.05rad/s ≤ ω ≤ 0.1rad/s

Primo tentativo: R1(s) = 1/s, in questo caso risulta

L(s) =
0.1

s(0.2s+ 1)(s+ 1)

con ωc ≈ 0.1rad/s che non soddisfa le specifiche, allora è necessario alzare il guadagno.
Secondo tentativo: R2(s) = 10/s, in questo caso risulta

L(s) =
1

s(0.2s+ 1)(s+ 1)

con |L(jω)| > 10 per 0.05rad/s ≤ ω ≤ 0.1rad/s, ωc ≤ 1rad/s e φm ≈ 45◦ che non soddisfa le
specifiche.

Terzo tentativo: R3(s) = 10(s+ 1)/s, in questo caso risulta

L(s) =
1

s(0.2s+ 1)

con |L(jω)| > 10 per 0.05rad/s ≤ ω ≤ 0.1rad/s, ωc ≈ 1rad/s e φm = 90◦ − tan−1(0.2) ≈ 78.5◦,
che soddisfa tutte le specifiche.

R3(s) è un controllore proprio tipo PI.
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Figure 7: Diagrammi di Bode dell’Esercizio 3

4 ESERCIZIO 4

Si consideri il sistema di controllo digitale in Fig. 8 dove i convertitori A/D e D/A operano in fase

R*(z) ZOH
T

G(s)T

y(t)u(t)e(t)yo(t) u*(k)e*(k)

Figure 8: Figura dell’Esercizio 4

e sincronia con periodo T > 0.

G(s) =
1

s
, R∗(z) =

α

z

4.1 Si analizzi la stabilità del sistema ibrido in funzione di α > 0 e T > 0 seguendo il punto di vista
analogico (calcolando la funzione di trasferimento equivalente R(s) da e(t) a u(t)) e dal punto di
vista digitale (calcolando il sistema a segnali campionati G∗(z) da u∗(k) a y∗(k) = y(kT )).
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4.2 Si ponga T = 0.25, α = 1 e si calcoli l’espressione analitica di u∗(k) quando y0(t) = sca(t) .

8



SOLUZIONE ESERCIZIO 4
Punto di vista analogico. La L(s) ”equivalente” è:

L(s) =
α

s
e−sT/2e−sT =

α

s
e−s1.5T

Quindi ωc = α e Φm = π/2− 1.5α. Dunque αT < π/3.

Punto di vista digitale. Il sistema a segnali campionati corrispondente a G(s) è

G∗(z) =
T

z − 1

e quindi

L∗(z) =
αT

z(z − 1)

L’equazione caratteristica è
z2 − z + αT = 0

La somma delle radici è 1 e il prodotto αT , con αT > 0. Quindi αT < 1.

Dal momento che yo(t) = sca(t) abbiamo che y∗o(k) = sca∗(k). La funzione di trasferimento da
y∗o(k) a u∗(k) è:

R∗(z)

1 +R∗(z)G∗(z)
=

Quindi, con α = 1 e T = 0.25 si ha:

U∗(z) =
R∗(z)

1 +R∗(z)G∗(z)

z

z − 1
=

αz

z2 − z + αT
=

z

(z − 0.5)2

In conclusione
u∗(k) = 0.5k−1ram∗(k)
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