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Chapter 1

Introduction

These notes aim at reviewing some results on stability analysis and stabilizing control synthesis for
continuous time switched linear systems. The notes are articulate® aitapters. In the first four
chapters we consider autonomous switched systems described by

X(t) = AgyX(t) , X(0) = Xo (1.1)

defined for allt > 0 wherex(t) € R" is the stateg(-) : R — {1,2,--- ,N} is the switching rulexo is
the initial condition and
Aty € {A1,-- AN} (1.2)

It is clear that this model naturally imposes a discontinuityAg#, since this matrix must jump in-
stantaneously from; to Aj for somei # j = 1,--- N once switching occurs. In other words; ) is
constrained to jump among tievertices of the matrix polytop@A, - - -, An}.

In Chapter2 we first consider the problem stability of (1.1), (1.2) under an arbitrary switching signal
o(-). Then, we move to the problem of determining time-dependent strategi¢shat ensure the
stability of the resulting time-varying linear system. This problem calls for the concepteif time
andaverage dwell timeln Chaptes3, we pass to the problem of determining stabilizing switching rules
o(t) = &(x(t)) that depend on the measure of the system’s state. Then, in CHapteperformance
index

I= /0 X(1) Qg X(1)dlt (1.3)

is introduced and we revise some possible solutions to the optimal control problem for switched sys-
tems, i.e. the determination of a state-feedback switchingaile = &s(x(t)) that minimizes the
performance] in (1.3). In this same chapter a thorough analysis of the optimal switching rule for
second-order oscillating systems is also developed. In Chaimme recent results on the stabiliza-
tion of switched systems with incomplete measurements are collected. In this framework, we assume
that the system’s state is not available for measurements and the designer only has to rely on the output
equation

y(t) = Co)X(t) (1.4)

The stabilization problem consists in the determination of a switchingaule= &,(y;<t(7)), de-
pending on the past values of the output variable (1.4), capable to stabilize the closed-loop system.

Stability of continuous time switched linear systems have been addressed by several authors, [4], [6],
[11],[12], [27], [15], [16], [17], [20] and [22], among others. While the survey papers [6] and [16] give
a complete and detailed description on the problems arising in this area, the recent paper [11], dealing
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4 CHAPTER 1. INTRODUCTION

with extensions of LaSalle’s Invariance Principle provides an interesting discussion on a collection of
results on uniform stability of switched systems.

Generally speaking, wheai(-) is state independent, that is, when it is @riori piecewise constant
signal, the reported stability conditions are obtained using a family of symmetric and positive definite
matrices{Py,--- ,Py} each one associated to the correspondent matrix of thAget-- Ay} such

that a Lyapunov functiow(x(t)) is non increasing with respect t(t) at every switching time. In
Chapter2, for minimum dwell time design preserving global stability it is assumed that each matrix
of the set{As,---,Ay} is asymptotically stable but the non increasing condition on the Lyapunov
function is relaxed. It is replaced by the weaker condition that at every switchingitine sequence
v(X(tk)), fork=0,--- 00, converges uniformly to zero. In some instances, our design procedure for
the determination of the minimum dwell time, based on a quadratic guaranteed cost, is related to the
results of [21] assuming further that the switching rule isanptiori given but can be taken arbitrarily,
among the feasible ones, see [9]. For comparison purpose a simple second order example is solved
and it is shown that the estimation of the minimum dwell time provided in this paper is sensibly better
than the one obtained from the classical result of [17]. The results obtained in this context has some
resemblance with those achieved in [24], where the characterization of the exponential growth rate of
switched system is provided. However, much work is needed to establish the possible links between
these two papers. The average dwell time results are those provided in [10], for Hurwitz matrices
and [41] when there are both stable and unstable matrices. Notice that the dwell time calculation
provided in the first part of Chapté also suggests a way to solve the state-feedback stabilization
problem for a input driven switched system characterized by the p&irB;). Indeed, under mild
assumptions it is possible to design matrikesuch that to stabilize the closed-loop systéins BiK;.

Hence one can compute the upper bound of the dwell time to establish the maximum time duration
of the control law. The general problem of minimization of the dwell time as a function of the design
local control lawsK; is still open.

In Chapter3, for switched systems witli(-) being state dependent, the stability condition is expressed

in terms of a set of inequalities that we chllapunov-Metzler inequalitielsecause the variables in-
volved are a set of symmetric and positive definite matridas--- ,Ry} and a Metzler matrix1.

The point to be noticed is that our asymptotical stability condition does not require any stability prop-
erty associated to each individual matrix of the &&t,---, Ay} and it contains as special cases the
guadratic stability condition and the well knowmeragestability condition provided in [15], [10] and

the references therein. An important point of our main result is that it includes the stability of possible
sliding modes, a fact that in the particular c&e- 2 was observed in [15]. It is also important to
stress that in [20] we can find some stability results related to the same problem (without the analysis
of sliding modes) but restricted to the special cse 2 which does not require the formalism based

on the Lyapunov-Metzler inequalities introduced here. In our general case, the price to be paid, how-
ever, is the non-convex nature of the the Lyapunov-Metzler inequalities being thus difficult to solve
numerically. From this previous result, a more conservative but easier to solve asymptotical stability
condition is proposed. It is important to express that these stability conditions do not suffer of a com-
mon drawback appearing, for example, in [13] where sliding modes are excluded and whose eventual
occurrence has to be a posteriori verified. Adopting the more stringent conditioAgthmtlongs to

the convex combination of matricés,--- , Ay the control design falls precisely into the well known
class of LPV control systems already analyzed and solved for state and output feedback, [25], [30].

In Chapter4 the theory of optimal control of switched systems is recalled pursuing the approach
that hinges on the Hamilton-Jacobi equation. In particular the finite horizon problem is dealt with
and an algorithm is provided based on gridding of the unitary sphere. Moreover, the particular class
of second order oscillating systems is considered and the infinite horizon optimal control problem is
addressed. To this regard, an algorithm providing the optimal conic switching surfaces is discussed.

The stability conditions expressed in terms of the Lyapunov-Metzler inequalities is developed further



in Chapterd to cope with the determination of lower and upper bounds on the optimal switching con-
trol and output feedback switching control design. It is important to stress that a simple generalization
of the Lyapunov-Metzler inequalities provides a solution to the Hamilton-Jacobi-Bellman inequality,
an useful property for optimal cost lower bound calculation, see [28]. These problems are addressed
in a general framework where the quadratic cost is defined from a set of external impulse-type per-
turbations. Throughout some simple numerical examples of third order are included for illustration
purposes. A more realist practical application of a switched linear system of fourth order is included.
The problem consists on the design of a switching control strategy for semi-active suspensions in road
vehicles, and is motivated by the paper [29], where an optimal control algorithm has been devised.
Finally, a complete analysis of second order oscillating switched system is carried out and a algorithm
to find the optimal control law is provided, see [42].

Very little attention has been devoted to the design of stabilizing output feedback control laws. The
reader is requested to see [6], [16] and [15] for a rather complete review on stability of continuous time
switched linear systems, where special attention is given to the case of switching between two linear
systems. The same reference also provides a discussion on hybrid feedback control based on output
measurements which can not be directly generalized to cope with the problem addressed inSChapter

The notation used throughout is standard. Capital letters denote matrices and small letters denote
vectors. For scalars, small Greek letters are used. For real matrices or vidtuticétes transpose.
For square matrice®r(X) denotes the trace function &f being equal to the sum of its eigenvalues
and, for the sake of easing the notation of partitioned symmetric matrices, the syluEnotes
generically each of its symmetric blocks. The s€&tdenotes the set of all Metzler matrices, composed
by square matriced € RN*N of fixed dimensions with nonnegative off diagonal elements. The subset
denoted as#; is composed by Metzler matrices satisfying the normalization const@i]‘g;srj =0
forall j =1,--- ,N. Hence, each matrix inZ. has a null (unitary) Perron-Frobenius eigenvalue
associated to a nonnegative eigenveetor0 € RN. The unitary simplex defined for all vectoksz RN

such that > 0, foralli=1,--- ,N andyN ; A = 1 is denoted by\. Given matriced)s, ---,Uy of
compatible dimensions amde A, the matrixU, = ziNzl)\iUi denotes a matrix obtained by a convex
combination. The x n identity matrix is denoted ds. Finally, 5(t) denotes the unitary impulse and
the square norm of a trajectosit) defined for alit > 0, denoted|s||3 equals|s||3 := J5’ s(t)'s(t)dt,

see [5].
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Chapter 2

Time Switching Control

This chapter considers switched linear system defined by the model (1.1) and (1.2). First, it discusses
the ideas underlying the verification of stability under arbitrary switching laws. Then, the attention
will be focused on the design of time switching control laws.

2.1 Stability under arbitrary switching
Let us consider the switched system
X(t) = Agpy)X(t) , X(0) =Xo (2.1)

We want to address the following problem: under which conditions the system is asymptotically stable
for anyadmissible! o(-)?

Notice first that the signatr(t) =i, Vt, is admissible. This means that a necessary condition for
stability under arbitrary switchingis that all matrices\, i = 1,2,---,N are Hurwitz. Unfortunately,
this condition is not sufficient. A simple counterexample is provided by the two triangular matrices

-1 -5 -1 0
S IR e

Indeed, consider th&T periodic signal characterized by

2 tel0,T)
dw:{l te%iﬂ

and the transition matrisb(t, 7) of the periodic system
X(t) = AgyX(t)
It turns out that the monodromy matrix (transition matrix over one period) is
D(2T,0) = el

The periodic system is asymptotically stable if and only if the monodromy matrix has all eigenvalues
(charactreistic multipliers) inside the open unit disk. In Figure 2.1 is plotted the maximum absolute

7



8 CHAPTER 2. TIME SWITCHING CONTROL

Figure 2.1: The maximum absolute characteristic multiplier as a functidn of

value of the two characteristic multipliers as a functio@ofit turns out that fofT = 1 (for example)
the system is unstable, so that the above switching strategy is destabilizing.

On the other hand, a simple sufficient condition for GUAS can be formulated by means of the Lyapunov
inequalities
AP+PA <0, i=12--M (2.2)
Itis indeed clear that the function
V(x) = XPX(t) (2.3)

is a Lyapunov function for any admissible sigrgk), since

along the trajectories of the system. The function (2.3) is a Common Lyapunov Function (CLF) for
the switched system, in that

OV (x)

V(x) >0, V(X = ™

x<0, x#0

for any switching signatr(t). Moreover, it is quadratic in the state, beii¢x) = X Px(t), and hence-
forth is referred to as Common Quadratic Lyapunov Function (CQLF).

Unfortunately, there are systems which are asymptotically stable under arbitrary switching and do not
admit any CQLF. However, it can be shown that a linear switched system is GUAS if and only if it
is possible to find a CLF. A techinque to find the CLF refers to the so-called homogeneous Lyapunov
functions, see [58], [59]. For instance consider

-1 -1 -1 -10
Al:[ 1 —1}’ Azz{o.l —1]

To see that this system does not admit ant CQLF, consider, without any loss of generality, the matrix

1r
- [
rq
IHere admissible means that in finite time only a finite number of switching can occur. For every piecewise constant
switching signal the system is linear and time-varying. thus, asymptotic stability and exponential stability do coincide.

2We say that the system is GUAS (Global Uniform Asymptotically Stable) is for each admissible switching signal the
associated time-varying linear system is asymptotically stable.
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Figure 2.2: system for various switching signals, randomly generated.
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Figure 2.3: The CLF for various switching signals, randomly generated.

which is positive definite if and only i > r2. Then computé; = AP+ PA; andlMy = ALP+ PAp. It
turns out that" 1 andl"; are negative definite if and only if

(r —300)2

2, (r=3% _
g°>1 g g- > 100 800

As can be easily seen, no valuegyfatisfy the inequalities, and hence the system does not admit any
CQLF. However, there exist the CLF of degi®e

V(x)=¢&'P§

where
x4 3649 —-14.323 -5.49 6.807

1
1
XX x 6934 9023 —282004 182001
E=| x5 |, P=|« x 1181813 -37517 693818
X1%3 *  x * 5911771 —4520587
*

x‘z1 * * * 11393280

In Figure 2.2 it is plotted the phase portrait of the system'’s state for some randomly generated switching

signals. On the other hand, Figure 2.3 shows the ¥ for various switching signals, starting from
x(0)=[11].
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To end this section, notice that it is always possible to associate with a GUAS system a CLF that is
homogeneous of degr@aand in particular one CLF that takes the form

V() = max (%2}

i=1

,2,

wherel!, i =1,2,--- kare suitable row vectors ahds a large enough positive integer. Analogously,
the following result holds

Theorem 1 The system is exponentially stable under arbitrary switching if and only if there exist
matricesw € RN Q; e RN*N N > n, such that

WA =QW, 1(Q)<0, Vi (2.4)
O

whereps(Q) < 0=max[Qiljj + Yk.j|[Qi]jk|, see the recent research monograph [2].

2.2 RMS under arbitrary switching

The techniques used to determine if a switched sysetm is stable under arbitrary switching can be
extended to cope with performance requirements. Herein we briefly considerotheean square
property of a switched system. To be precise, let us consider the switched system

X(t) = Ao(t>X(t) + Bg(t)l.l(t) (2.5a)
yt) = CypyX(t) +Dgpyu(t) (2.5b)
whereA;, i =1,2,---,N, are Hurwitz matrices. It is clear that, under the assumption that the system

is asymptotically stable for any switching signal, it makes sense to consider the problem of finding the
minimumy > 0 for which

oup W2

<Yy (2.6)
weLy(0,w) |W[[2

Notice that such
y = max{y}
wherey is theH. norm associated with the stationary systein B;,C;, D).

Theorem 2 Assume that there exists a positive definite m&rsuch that

AP+PA  PB Cf
B/P —y’l D! | <0,VieN (2.7)
C Di I

then, for each switching signal, the equilibrium solutiorx = 0 of the switched linear system (2.5) is
globally asymptotically stable and

sup oo()/y— y’ww)dt < 0 (2.8)

welp,w#£0-/0
Proof First of all notice that (2.7) is equivalent 81 — D;D; > 0 and

AP +PA + (PB +C/D;) (Yl — PR +CD)+CC <0, Vi (2.9)
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In particular
AP+PA <0

so that global asymptotic stability under arbitrary switching is ensured. Also, the state of the system
goes to zero for eaclr and each input square integrable disturbawceThis means that, taking
V(x) = XPx, we haveV (x(«)) = 0. Now, compute the derivative &f (x) along the trajectories of
(2.5). Letting

w* = (y’I —D/D;)"}(RB; +C/D;)'x

from (2.9) it turns out that

V(X) = X(A;P+PAs)X+2XPByw
< —Yy+y PwWw— (w—w") (1 - DiDi) (W—w")
< —Yy+yww
Integrating from0 to c and recalling tha¥/ (x(0)) =V (X(e)) = 0 it follows that
/ (Yy—ywWw)dt <0, Vo, Yw#0, wel,
0
|
Consider now inequality (2.7). Taking, i =1,2,--- ,N in a simplex, i.e.a; > 0andy;a; =1, one

can multiply (2.7) bya;, sum up and use the Schur complement Lemma to obtain

AuP+PA; + (PBy +C;Dg)(y?l —DgDa) *(PBy +C;Dq)' +C4Ca < 0

where
N N
Ay = aiA, Bg =) aiB
2, 2,
N N

Co = l;aiciy Da:';aiAi

This means that the polytopic system definedMgy By, Cq, Dy hasH. norm less thary for each
choice ofa in the symplex. In conclusiortl, performances of switched systems under arbitrary
switching laws are related to those of polytopic systems. This fact extends a well know result for
stability under arbitrary switching, for which quadratic stability is only a conservative sufficient con-
dition. For a thorough discussion on nonconservative solution via polyhedral Lyapunov function, the
interested reader is referred to the recent volume [2].

2.3 Dwell-time

In this section we assume that each matrix of the{8gt- - - , Ay} is asymptotically stable. The prob-
lem under consideration can be stated as follows : Determine a minimum dwelltim@ such that
the equilibrium poink = 0 of the system (1.1) is globally asymptotically stable with the time switching
control

ot)=ie{l,---,N}, te[ttkr1) (2.10)

wherety andty1 are successive switching times satisfytpogy — tx > T. for all k € N and the index

i € {1,---,N} selected at each instant of time> 0 is arbitrary. Hence, asymptotical stability is
preserved whenever(t) remains unchanged for a period of time greater or equal to the minimum
dwell time T,. The next theorem provides the theoretical basis towards a possible solution of this
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problem by characterizing an upper bound Tor It uses the concept of multiple Lyapunov function
with the innovation that the classical non increasing assumption at switching times is no longer needed,
see [4].

Theorem 3 Assume that, for sonie> 0, there exists a collection of positive definite matri€Bs --- , Py}
of compatible dimensions such that
AR+RA < 0,Vi=1---,N (2.11a)
NTPAT-R < 0,Vizj=1--N (2.11b)

The time switching control (2.10) witl,; —tx > T makes the equilibrium solution= 0 of (1.1)
globally asymptotically stable.

Proof Consider, in accordance to (2.10), tlet) =i € {1,--- ,N} for all t € [t,tx.1) wherety 1 =
tx + Tk with Tc > T > 0 and that at = t,, 1 the time switching control jumps to(t) = j € {1,--- ,N},
otherwise the result trivially follows. From (2.11a), it is seen that, fot allty,tx. 1), the time deriva-
tive of the Lyapunov function(x(t)) = x(t)'Py)X(t), along an arbitrary trajectory of (1.1) satisfies

VX)) = x(t)(AR+RA)X(1)
< 0 (2.12)

which enables us to conclude that there exist scalarsO andf > 0 such that

[x(1)]12 < Be~ = Wy(x(ty)) , Vt € [t k1) (2.13)
On the other hand, using the inequalities (2.11b) we have
V(X(tki1)) = X(ticr1) PiX(tea)
(t) ef\TkP eA'Tkx(tk)
x(t) N T RA T Tx(t,)
(t)’ PX(tk)
(X(t))

where the second inequality holds from the fact that for everyTy — T > Oitis true thate'“H{TF’.eAir <
R. The consequence is that there exjsts (0,1) such that

X

X

VANVANVAN

Y (2.14)

V(X(t) < V(%) , ke N (2.15)

which together with (2.13) implies that the equilibrium solutios: 0 of (1.1) is globally asymptoti-
cally stable. [

This result deserves some comments. First, it is simple to determine the scafaend u such
that (2.13) and (2.15) hold. Indeed, assuming #Rt---Py} satisfy the conditions of Theorem 3
then, from (2.11a) there exists> 0 such thatA/R + RA < ¢l for all i = 1,---,N yielding a =
£/ max AmaxP) > 0andf = 1/ min; Apin(R) > 0. Furthermore, from (2.11b) there exifisc <1
such thaeTPeAT < R foralli# j = 1,---,N leading tov(x(t:1)) < uv(X(t)) and consequently
(2.15). Second, since all matrices of the §&f, - -- , Ay} are supposed to be asymptotically stable, the
constraints (2.11a) are always feasible and the constraints (2.11b) are satisfied wHers taken
large enough. Third, assuming that matriggs - - , Ay are quadratically stable, which is the same to
say that they share a positive definite maRiguch that

AP+PA<O0,Vi=1--.N (2.16)
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then the inequality (2.11b) is satisfied f&r=--- = By = P for any T > 0 meaning that the switching
policy (2.10) may jump from to j arbitrarily fast preserving asymptotical stability. Hence, Theorem
3 contains, as a particular case, the quadratic stability condition. FinallyTwit® fixed it is always
possible to define a time switching control strategy (2.10) sucthihgtis periodic. As a consequence,
a necessary condition for the feasibility of constraints (2.11a) and (2.11b) is

N
A eBpT

whereAq(-) denotes a generic eigenvalue(of and{By,--- ,By} are matrices corresponding to any
permutation among those of the 4&,--- ,An}. However, since (2.10) may produce non-periodic
policies as well, the necessary condition (2.17) for the existence of a feasible solution to inequalities
(2.11), generally does not meet sufficiency. In the sequel, this aspect will be illustrated by means of an
example.

In this setting, an upper bound for the minimum dwell tifiecan be computed by taking the
minimum value ofT satisfying the conditions of Theorem 3. Hence, it can be calculated with no big
difficulty from the optimal solution of the optimization problém

6(T) := max <1 (2.17)
q: ,o

,n

T>0.P1r>nol,r}"m>0{T D (211} (2.18)

which, for eachrl' > 0 fixed, reduces to a convex programming problem with linear matrix inequalities
constraints that can be handled by any LMI solver available in the literature to date, see [3] for an
important study on systems and LMIs. A line search procedure is then used to deal with the scalar
variableT > 0.

Finally, it is possible to generalize the result of Theorem 3 in order to define a guaranteed cost to
go from an arbitrary initial point to the origin, associated to the stabilizing time switching rule (2.10)
with ty, 1 —tx > T for any fixedT > 0. To this end we make the assumption that> 0 is known such
thatty.1 —tx < 7 for all k € N. Clearly, these quantities are related through> T > T, where the
second inequality assures global stability.

Theorem 4 LetQ > 0e R™" and.7 > T > 0 be given. Define the set of symmetric, non-negative
definite matrices

Ri::/geNth'*‘dt i=1....N (2.19)
0

Assume that there exists a collection of positive definite matfiegs- - ,Py} of compatible dimen-
sions such that

AR+PA+Q < 0,Yi=1,---,N (2.20a)
HATRAT-R+R < 0,Vigj=1N (2.20b)

The time switching control (2.10) with >t 1 —tk > T makes the equilibrium solution= 0 of (1.1)
globally asymptotically stable and

/o "X/ QX(t)dt < XoPy0 %0 (2.21)

Proof Since forQ > 0and.7 > T > 0 given, each matriR defined in (2.19) is nonnegative definite
and inequalities (2.20) are satisfied then, inequalities (2.11) are also satisfied. As a consequence,

3This problem should be stated wiifif instead ofmin. All feasible sets of problems expressed in terms of LMIs must be
considered closed from the interior within a precision defined by the user.
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asymptotical stability follows from Theorem 3. On the other hand, using (2.19) together with the
inequalities (2.20) we have thBt> R; and

A(R-R)+(R-R)A < -Q-AR-RA
ydeNt Aitdt
< —Q—/O Seta

< —NTQNT
< 0 (2.22)
foralli=1,--- ,N. The important consequence of this calculation is that for éacli,--- ,N the

inequalitye'“w'/T(PI —R)ENT < (B —R) holds for anyr > 0. Using this property, taking into account
the switching strategy (2.10) with, 1 —tx = Tx > T and the inequalities (2.20b) one gets

V(X(tk1)) = X(tkr1)' I:)J (tk+1)
< X)) (R - RN Tk Tx(t,)
< X(t)'(R —R)x(t)
< V(x(t )) X(t)' Ry 1) X(t) (2.23)

which summing up for alk € N and taking into account thaf >t — tx allows us to write

/mx(t)’Qx(t)dt _ 5 /tkHX(tk)’ef“f(t*tk)QeAi(t*tk)x(tk)dt
0 k;) t

< > X(t) RoyX(t)

k=0
< V(Xo) (2.24)

which proves the proposed theorem.

It is interesting to observe that the conditions of Theorem 4 are feasible if and oflyifT > T,
and from (2.21) it is seen that a more accurate guaranteed cost is obtained whenever the¥ailsie of
chosen as small as possible. In addition, the chdice 4 enables us to conclude that the proposed
time switching rule (2.10) with,,; —t, > T., makes the trajectory(t) = QY/?x(t),t > 0 quadratically
integrable. Theorem 4, admits the extreme situatidor= T = 4o for which no jump occurs and
inequalities (2.20) are verified for

R:/(;weNt(Q+e|)e‘tht>Rizo,i:1,---,N (2.25)

with € > 0 arbitrary. Where > 0 goes to zeroB goes toR; and (2.21) becomes a well known result.
On the other hand, fof > 0 arbitrarily small and any” > T, feasibility holds whenever the set of
matrices{Ay,--- ,An} admits a common Lyapunov function.

Example 1 For illustration purpose of the theoretical results obtained so far, let us consider the fol-
lowing example wittN = 2 and matrices

0o 1 o 1
A= [ -10 -1 }  Fo= { -0.1 0.5} (2.26)

which are not quadratically stable. First, from problem (2.18), we have calculated an upper bound for
the minimum dwell time as beifg < 2.76. To give an idea of its conservativeness we have calculated
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Figure 2.4: The functio®(T).

from the plot of Figure 2.4 the valuk.er = 2.71 corresponding to the necessary condition for stability
(2.17), arising from linear periodic systems. Both being very close indicates, for this simple example, a
good precision on the determinationf On the other hand, for comparison purpose we have applied
the classical result of [17] for the determination of an alternative upper bound for the minimum dwell
timeT, given byT, < max_1.. n{Ti} where

T = inf {O’ . ||eNt| < el@—PY Vt>0} (2.27)
a>0,>0 B

For matrices in (2.26) we have numerically determifige:= 2.33and T, = 6.66 yielding an estimation

for the minimum dwell time as beiflg < 6.66. Hence, in this particular example, the result provided

by the solution of problem (2.18) is much more precise but at expense of a more expressive compu-
tational effort. Figure 2.5 has been constructed by simulation of system (1.1) with the time switching
rule (2.10),t, 1 — tx = 3.0, initial conditionsxy = [1 1]’, g(0) = 2andQ = |. The family of Lyapunov
functions has been calculated from the optimal solution of the following convex programming problem

Pl>0m}%>0i:r2§{<N{x{)Rxo : (2.20)} (2.28)

which puts in evidence that a guaranteed cost can be determined for the worst case as far as the
initial condition o(0) appearing in (2.21) is concerned. Fo¥ =T = 3.0, we have obtained the
minimum guaranteed cost equal = 10061, valid for both initial conditions. As commented
before, the Lyapunov functiorix(t)) = x(t)'Py()X(t) goes to zero as goes to infinity however, it is

not uniformly decreasing with respect to time. In Figure 5.2, due to the stability conditions of Theorem
4, the discontinuity points, marked with "0”, defines a globally convergent sequér(g)), for all

k € N. Solving again problem (2.28) but fa¥ = +c and T = 3.0 the minimum guaranteed cost
increases tad* = 147.94 as a consequence of allowing a more flexible switching rule (2.10) with
tka1 —tx > 3.0.

The example above shows that there is a clear improvement on stability conditions, dwell time and
guaranteed cost calculations when compared to the results available in the literature to date, see [11],
[17]. Notice however, that the conditions in Theorem 3 are still conservative, in that they employ only
piececewise quadratic Lyapunov functions. It is possible to diminish the conservativeness by using
homogeneous polynomial Lyapunov equations via Kronecker calculus, see [61]. Interestingly, these
conditions are strict for second order systems. For instance, the exact minimum dwell time associated
with the example above i* = 2.7078
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Figure 2.5: The Lyapunov function.

2.4 Average dwell-time

In this section we consider system (1.1), (1.2) and assume first that it is constituted by Hurwitz matri-
ces. For each switching sequerzend each > 7 > 0 denote byNy(7,t) the number of switchings
in the interval(t,t) and let.”[1a, Np] the set of switching laws obeying

t_
N (T,t) < No+ —

Ta

whereNp > 0 is the so-called chatter bound arglis the average dwell time. This means that there
may exist some consecutive switchings separated by lesgthlaut the average time interval between
consecutive switchings is no less thmanWe show, see [10], that there exist a sufficiently larfjsuch
that the switching system is stable for any switching ruleAifra, NoJ, with 7, > 13 and any chatter
boundNy. Indeed, since all matrices, i =1,2,---,N are Hurwitz, we can write

| < At i
Hence, takind € [t, tx+1) wherety is thek —th switch, we can write
lo(t,0)]| < el et
wherea = max a; andf3 = min 8. Hence, for all switching signals i&’[1a, Ng] we have
|0(t,0)] < e*Mo+Deln P!

Letting

L=g—y AP
the thesis follows.

Now, we assume that the system is composed by both Hurwitz and non Hurwitz matrices. Following

[41], and without loss of generality, we assume tAgtAy, ---, A; are non Hurwitz and\. 1, Ar 2,
---, Ay are Hurwitz. The it is possible to write

||6A1t|| S eaH’Bit, I :1727"'7r

||6A1t|| S eai*Bit, i:r+1727"'7N

with aj > 0andf; > 0, Vi. Now let

4 _ .
= max b = min i
B i:1,-<-,rB|, B i=|’+l,~~.NB|
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and T (t) [T~ (t)] the total activation time of the unstable [stable] subsystems in the intfhtal
Finally let.## ., the class of switching laws satisfying the following two conditions

- + *
EQELES 2 g+g B e, B), A€(0,B) (2.29)

T he average dwell time is not smaller thap (2.30)

It is possible to prove that there exigtssufficiently large such that the switched system is stable for
any switching rule in”# ¢, for any 1, > 1; and any chatter bourlsy. Indeed, for any € [y, tky1) it
follows

||q3(t,0)|| < ea(k—}—l)eB*T*(t)—B’T’(t)

wherea = max a; and B = max_1....r, B = Mini—r+1.. nBi. SinceTH(t) + T (t) =t a simple
computation shows th@+T*(t) — B~T(t) < B*t so that

( *
||¢’(t,0)|| < ea(No-s-l)e%*B )t

The result follows by taking
o

Br—A
Notice that if all matrices are Hurwitz, condition (2.29) is satisfied so that the last formula corresponds
to the average dwell time in this case.

Ty =

2.5 RMS with dwell time constraint

Consider again system (2.5) and assume #ai = 1,2,--- ,N are Hurwitz matrices. The RMS
problem with dwell constraint consists in finding the minim@rh> 0 for which (2.6) holds for any
switching signal with commutation instants satisfytpg —tx > T*.To this end, denote by the set
of all switching signals satisfyinty,.; —tx > T, Vk.

Notice first that, beingy > y (theH. norm of systen{A;, B;,Ci, Di)), there exist positive semidefinite
matricesP, satisfying the Riccati equations

AP +PRA; + (PB; +C/Di)(y? - D|Di) }(RBi +C/D;) +C/C; =0 (2.31)

with Aj 4 Bj(y?l — D{Di)‘l(P. Bi + C/Di)’ Hurwitz. To this end, we need to introduce the following
matrices

Hi = A+BiL (2.32)
Q = (C.+DL.) C.+DL. —y2LIL (2.33)
L = (Y- YrBi+CD) (2.34)
s - /Oe"'itBi(I—y‘zDiDi)‘lBi’e It (2.35)
Ui(t) = /OTeHi‘Biu—y—ZD{Di)—lsfeHi"dt (2.36)
R(T) = /OTertQieHi‘dt (2.37)
(2.38)

(2.31) can be factorized as
H/R+RH +Q =0 (2.39)
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foralli € N. As indicated before, noticing that the optimal ghjris determined from the unique stabi-
lizing solution to the algebraic Riccati equation (2.31), maltfixs Hurwitz for each € N. However,
since matrixQ; for eachi € N is not positive definite, the stabilizing solution of the Riccati equation is
not a Lypunov matrix associated to the closed loop system, a well known fag} itheory. The next
lemma is of key importance since it gives an upper bound tothecost. It regards the differential
Riccati equation

—M =AM +MNAs + (MBy +C,Dg)(y?l —D;Dg) (MBy +CLDy)' +CLCs =0 (2.40)

Lemma 1 Assume thatr(t) =i fort € [ty, tk+1) ando(tx.1) = j. Assume that a bunch bf positive
definite matricesz; are given. Finally, assume that the solutibiit) of (2.40) with final condition
M(t1) = Zj exists in the interval € [t, t,1). Then, for the switched linear system (2.5), the following
upper bound holds

sup /t: " (Yy— Y"Ww)dt < X(t) T (t)X(t) — X(tkr1)'ZjX(bes 1) (2.41)

where
MN(ty) =R+ eHi/(tk+1*tk) ((Zj _ PI)—l . V72Ui ((terr — tk))) -1 Hiltr1—t)

Proof The proof follows by computing the differential equation fdt(t) — R)~2, the derivative of
V(x) = XTI(t)x(t) and using classical square completing arguments.

]
From Lemma 1 itis clear that, M (tx.1 —tk) < Z;, for anytx,1 —tx > T, then

sup Ow()/y* yww)dt < ki)x(tk)’” (t)X(t) — X(tr1)'ZiX(tkr1) < X(0)"Zg(0)X(0) (2.42)

wely

so that the guaranteed bound is obtainer(8 — 0. The next theorem states a sufficient condition in
terms of LMls.

Theorem 5 Assume that, for givel > 0, and for alli, j, there exists matriceg;,Z,,---,Zy such

that
ANZi+ZA ZB C
B/Z —yl D/ | <0 (2.43)
G D; —1
and
i/T aHT _ 7. i/T .
R AT R P oas

The following hold:

a) The equilibrium solutionx = 0 of the switched linear system (2.5) is globally asymptotically
stable.

b) Any trajectory of the switched linear system (2.5) with zero initial condition satisfies

sxp/ooo()/y—yzm/w)dt<0, VYoecor (2.45)



2.5. RMS WITH DWELL TIME CONSTRAINT 19

Proof We have to ensure thait(t,1 —tc) < Z;, for anyte, 1 —tc > T, whenl(t;1) = Zj. Letting
T =t 1 —t, this is tantamount to saying thEi(0) < Z; whenll(1) = Z;, i.e.

Z >R+ T ((Zj—-R) oy (n) T, Vi T

It is left to the reader to prove that this inequality is ensured by (2.44) when the marisatisfy
(2.43). =
Notice that fory — oo, the inequalities become
Ai/Zi + ZiAi —I—Ci/Ci <0
ATz, AT —Z +R(T) <0, R H/ Neicehtdt
0

so that conditions the conditions of Theorem 4 for thecost are recovered. Moreover, if feasibility
occurs for ag — 0, thenz; = Zj = Z so that

ANZ +zZA ZB C
Bz -y D | <0
G D; —I

which ensures that the attenuatipis guaranteed foo € 2, see (2.7).

For illustration purpose of the theoretical results obtained so far, let us consider the following example
with N = 2 already analyzed in Section 2.3 for dwell time calculations. The matrices of the switching
system (2.5) are given by

[ 0o 1 0]

{él El } - ~10 -1 1 (2.46)
=t | 0.8727 0| —0.8727 |
[0 1 0]

{?gz} —| —01 -o05 1 (2.47)
212 | 0 03333]0.3333 |

and it is important to mention that they are not open loop quadratically stable, in which case the value
of y for which (2.7) holds can not be calculated. The output matrices have been determined in such a
way that each transfer function has an unitaf§ norm, yieldingy. = max{y} = 1.

Moreover, withT > Ofixed it is always possible to define a time-switching control strategyZr
such thatHy) is periodic. As a consequence, a necessary condition for the feasibility of constraints

(2.43) and (2.44) is
N
A et

whereAq(-) denotes a generic eigenvalue(of and{Ey,--- ,En} are matrices corresponding to any
permutation among those of the qét;,--- ,Hn}. However, since the conditions of Theorem 5 take
into account non-periodic policies as well, the necessary condition (2.48) for the existence of a feasible
solution to inequalities (2.43)-(2.44), generally does not meet sufficiency. Hence a relevant function to
be determined, based on this necessary condition is

6(T) = max

<1 (2.48)
q:]_’..,’n

To(y) = rp;ag({T :9(T)=1} (2.49)

Figure 2.6 shows in solid line the functidi{y), in dashdot line the functiof,(y) againsty € (2.3, 7]
and in dashed line the value ©f ) which is in accordance to the fact that, for this particular example,
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Figure 2.6: The function$ (y) andTy(y).

the minimum dwell time preserving asymptotical stabilityTi2.7078 From this figure it is also
confirmed thaflp(y) < T(y) for all y > y. and that both are decreasing functions. The consequence is
that the minimum dwell time is associatge= 4. This is an expected behavior of the functibfy)

since for smaller values aof, bounded bellow by, the switched linear system must support richer
switching rules without loosing stability. This is compensated by the increasing of the corresponding
dwell time T (y). Figure 2.6 also puts in evidence the good concordance between the furictigns
obtained from a sufficient condition assuring inequality (2.45) &(¢) obtained from a necessary
condition assuring the same inequality. Although mentioned before, this aspect could be improved
but, in our opinion, the results reported in this simple example are precise enough to classify the
proposed method as a valid procedureff and dwell time specification.



Chapter 3

State Switching Control

In this chapter we consider once again the system (1.1) where the switching rule satisfies (1.2). The
main difference from the previous chapter is that, presently, it is assumed that the switches that occur
are based on the value of the state vector. Two main problems can be defined: in the first, tackled
in Section 3.1 it is assume that the state-dependent switching law is given and one has to establish
the possible stability of the system only. In the second, tackled in Section 3.2, the statexigdsor
available for feedback for atl> 0, and the goal is to determine the functiof)) : R" — {1,--- N},

such that

a(t) = u(x(t)) (3.1)
makes the equilibrium point= 0 of (1.1) asymptotically stable.

3.1 Stability of a given switched system

In this section we briefly consider a given switched system and we aim at analyzing its stability prop-
erties. For instance consider the pair of matrices

-1 -2
A1:|:; y:|7 A2:|:{ V:|7

wherey is a negative number close to zero and consider the switched system

" — Aix if xpx <0
T ] Aox if Xgxo >0

In Figure 3.1 it is shown the phase portrait of this switched system with—0.1. It is seen that the
system is asymptotically stable. Indeed we can find a continuous and differentiable function

V(x) = xx

which is positive definite and whose derivative along the trajectories of the switched system is negative,
since

V(X)— X/(A1—|—A/1)X if xqx0<0 - ZVX%—FZVX%—FZX;LXZ if x3x2<0
T XA+ AYX if xaxo >0 T | 2yxE42yx5 — 2x%p  if XgXxp >0

If the stability analysis with a single Lyapunov function is impossible, then it is possible to consider

21
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Figure 3.1: Phase portrait with= —0.1.

multiple Lyapunov functions. For instance consider again the two matticesdA, as before and
the switched system
.| Agx if x>0
] Axx if x9y<0
and the function y .
. Pix if x>0
V(X)_{ XPox if xg <0

o-[3 2] »-[% ¢

Notice that functiorV (x) is continuous in the switching surfage= 0, and

where

Vi(x) = X(PIAL+AP)X if xpx<0 [ 4p¢+2yx3 if x4 >0
T X (PR +AR)X i xaxe >0 T | ya+2yxs  if x1 <0

Hence the system is asymptotically stable.

The idea underlying the construction of the above Lyapunov function is to determine two functions,
each for each region, with decreasing derivative in the region where the corresponding dynamics is
active. For quadratic functions, it is useful in this regard, to resort to a well known result of convex
programming, calle&procedure.

Let us assume to have two quadratic functions

XQx, i=12
We want to check the following conditions
XQpx>0 Vx suchthat %Qx>0 (3.2)

It turns out that (S-procedure):

(i) If condition (3.2) is satisfied than there exists a nonnegative scataich that
Q—0aQ1>0 (3.3)

(ii) If condition (3.3) and there exis{ # 0 such thai;Q1Xo > 0, then condition (3.2) is satisfied.
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The conditionxy # 0 such that;Q1Xo > 0 is calledconstrain qualification The proof thati) — (ii)

is very easy and can be extended easily to a finite number of functit@s, i = 0,2,--- ,M. To

be precise, if there exists nonnegative scalars = 1,2,--- ,M such thatQg — ZiM:1 aiQ; > 0 then
x'Qox > 0 whenevex'Qix > 0,i =12 2,--- ;M. The converse resulti) — (i) is more difficult to be
proven and left to the reader.

Thanks to theS-procedure, given a switched system constituted by matAgas=1,2,1--- ,M and
activation regions of the typ€Sx > 0, the problem is to find positive definite matric@s(yielding
functionsV (x) = xX'Bx) such that

X (AP +RA)x<0, Vx such that §§x>0, i=1,21---M
To this aim it is sufficient to find positive definite matrid@sand nonnegative scalars such that
AR+PRA+aiS <0, i=12--M

Of course we are interested in functio®gx) which are continuous in the switching surfaces, and
hence an additional constraint has to be added. To be precise, if the boundary bégweamdx'S;x
is described byx: fi’jx = 0}, wherefjj is an-dimensional vector, theR — P; must satisfy

R—P = fijt +t;f}, V(i,j)=12-- M

for somen-dimensional vecto;.
However, notice that the fact that the derivative is negative is not sufficient to have asymptotic stability
if sliding modes occur. Indeed, consider the matrices

10 1 -1
welo S ae[D T

00666 01227
Sl:[ 0.1227 09487}’ 2="%

It is possible to find?, andP, satisfying
AR +PRA +ai§ <0

and the surfaces

with

—0.3615 32651 —0.4840 23165
anda, =3, o =29. Itis clear that the function

0.0645 —-0.3615 0.1311 -0.4840
PL= , P=

V (x) = maxxXRx
i=1,2
is such thaw/(x) < 0 whenever the derivative exists, i.esuch thai' (P, — P»)x # 0. However, the
trajectories of the switched system, as shown in Figure 3.2, tend to the unstable sliding surface obtained
by letting X (P, — P,)x =0, i.e. x, = 0.1656¢;. Along this surface, the chattering system behaves as
the linear combination

1 —0.4574

X=(Aa+A(l-0))X=| §4e0s 008523

obtained witha = 0.7562 To understand the reason of instability of the Filippov solutions, take a
vectory belonging to the switching surface and check that

Y (AP, +PA)Y >0, Y (AP +PA)Y>0
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Figure 3.2: Phase portrait with unstable sliding mode

Figure 3.3: Phase portrait with stable sliding mode

This means that, for eadh= 1,2 it results

D*y) — h'LfgSUPV(HhAHy)_V(y)

= maxy(AR+RA)y>0

Consider now the same switched system and the switching surfaces:
s1(X) = 0.3827%; +0.923%, =0, $(x) =0.9808¢ —0.1951x; =0

This means that . (05%) <0
S1(X)$(X) <
“(X(t)){ 2 290 >0

The phase portrait of the system is depicted in Figure 3.3. As a result, the switched system is asymp-
totically stable. However, finding a Lyapunov function is rather complex.

The switched system with the given pdif, A, was introduced in [60], where it is shown that it
does not admit a convex Lyapunov function. However, choosing the switching above surfaces we can
conclude that it is indeed stabilizable. The next section is devoted to the state-feedback stabilization
problem.
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3.2 Stabilization

First we discuss a classical stability condition provided in [15] and more recently in [23] as a particular
case of switched nonlinear systems. Let us first define the simplex

A= {/\ eRN : i)\i:17)\i>o} (3.4)

and assume that there exigdts € A such thath,  is asymptotically stable. Hence it is possible the
determination oP > 0 satisfying the Lyapunov inequality

A, P+PA, <0
It turns out that the switching rule with

o(t) = u(x(t)) = arg _min X(t)" (AP +PA) X(t) (3.5)

makes the equilibrium point= 0 of the switched system (1.1) globally asymptotically stable. Indeed,
considering the Lyapunov functiorix(t)) = x(t)'Px(t) we have

v(x(t)) = x(t) (A/a(t) P+ PAcr(t)) X(t)
= _min x(t)' (AP+PA)X()
= )r‘nei/r\1x(t)’ (A P+PA ) X(t)
< X(t) (A P+PA)X(t)
e (3.6)

In conclusion, if a set of matrices admits a Hurwitz convex combination, then there exists a stabiliz-
ing state-feedback switching rule such that the closed-loop system is quadratically stable. Also the
converse result is true fod = 2. Precisely, if there exists a state-feedback switching rule such that
the closed-loop system is quadratically stable, tAgmnd A, admit a convex Hurwitz combination.
Indeed, le/(x) = X Px be the quadratic Lyapunov function. This means that

X (AP +PA )X < 0
for all x such that’(A,P + PAy)x > 0 and viceversa. In view of the S-procedure we have
AP+ PA + B(A,P+PA) <0

and hencé\, = aA; + (1— a)Az is Hurwitz witha = (B + 1)1,

To end this point, itis important to keep in mind that, even if it is known that there exist& such that
A, is asymptotically stable, the numerical determination @f A andP > 0 such thai\) P+PA, <0
is not a simple task due to the nonlinear nature of this equation.

Now, let associate with the simpléxa set of positive definite matricé®y,--- , Py }. This fact enables
us to introduce the following piecewise quadratic Lyapunov function

N
. H / i Vi
V(X) = i:T.I.n,NX Bx= Rnel/r\] <.§ AiX P.x) 3.7)
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As it will be clear in the sequel, this Lyapunov function is crucial to our purposes, see [1] and the
references therein. However, it presents some difficulties to be handled including the fact that it is not
differentiable everywhere. To analyze this aspect thé(s¢t= {i : v(x) = X Px} plays a central role
sincev(x) fails to be differentiable om € R" such that (x) is composed by more than one element or,

in other words, when the result of the minimization indicated in (3.7) is not unique, [19]. A main role
is played by the the class of Metzler matrices denotegwnd constituted by all matricés ¢ RN*N

with elements;, such that

N
M2 0¥i# ], Y m =0V (3.8)
i=

Itis clear that any1 € .# presents an eigenvalue at the origin of the complex plane sifice Owhere

¢ =[1--- 1]. In addition, it is well known from the Frobenius-Perron’s theorem that the eigenvector
associated to the null eigenvalueldfis non-negative yielding the conclusion that there always exists
Aw € A\ such thaflA, = 0. The next theorem summarizes the main result of this section.

Theorem 6 Assume that there exist a &, --- ,Py} of positive definite matrices arfd € .# satis-
fying the Lyapunov-Metzler inequalities

N
AR+RA+ 5 miPj<0,i=1--,N (3.9)
j=1
The state switching control (3.1) with
u(x(t)) =arg. Enian(t)’P.x(t) (3.10)
i=1,-,

makes the equilibrium solution= 0 of (1.1) globally asymptotically stable.

Proof It follows from the Lyapunov function (3.7) which, as we have said before, is not differentiable
for all t > 0. For this reason we need to deal with the Dini derivative (see [8])

v(X(t+h)) —v(x(t))
h

Assume, in accordance to (3.10), that at an arbittaryO, the state switching control is given by
o(t) = u(x(t)) =i for somei € | (x(t)). Hence, from (5.19) and the system dynamic equation (1.1),
applying the result of Theoreth pp. 420 of [14] we have

Dfv(x(t)) = lim_ sup X+ hA ert)) —V(x(t))

- Ierlrs)i(g))x(t)’(AfH +RA)X()

< X(t)' (AR +RA)X() (3.12)
where the inequality holds from the fact that | (x(t)). Finally, remembering thdll € .# and that

X(t)'Px(t) > x(t)'Rx(t) for all j #i=1,---,N once again due to the fact that 1(x(t)), using the
Lyapunov-Metzler inequalities (3.9) one gets

DFv(x(t)) = hir& sup (3.11)

N
Dfv(x(t)) < —x(t) (glnjin>x(t)

N
< —< 7Tii>X(t)/P|X(t)
=1

< 0 (3.13)
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which proves the proposed theorem since the Lyapunov funefix(h)) defined in (3.7) is radially
unbounded.

It is important to observe that Theorem 6 does not require that théAset-- ,Ay} be composed
exclusively by asymptotically stable matrices. Indeed, Witk .#, a necessary condition for the
Lyapunov-Metzler inequalities to be feasible with respec{Ry,--- ,Py} is matricesA; + (5 /2)I
foralli =1,---,N be asymptotically stable. Singg < 0 this condition does not imply on the as-
ymptotical stability ofA;. However, an interesting case occurs when all matr{@gs--- ,Ay} are
asymptotically stable for which the choife= 0 is possible and the state switching strategy proposed
preserves stability. Furthermore, if the 4é4;,--- ,Ay} is quadratically stable then the Lyapunov-
Metzler inequalities admit a solutidh = --- = By = P andl (x(t)) = {1,--- ,N} for all t > 0. In this
classical but particular case, at any 0, the control lawu(x(t)) =i € {1,--- ,N} can be chosen arbi-
trarily and asymptotical stability is guaranteed. Hence, Theorem 6, contains as a particular case (since
the Lyapunov-Metzler inequalities do not dependbanymore) the quadratic stability condition.

Remark 1 (Chattering)

Another important feature of Theorem 6 is that chattering in the switching when occurs is always sta-
ble. Indeed, assume that R" belongs to a certain regio of the state space where the cardinality

of 1(x) is greater than one. From the Lyapunov function (3.7), a switching frarh(x) to j € 1(X) is
possible only it (A/P; + PjA)x < X' (AR + RA)x < 0 where the last inequality follows directly from
(3.9). Hence, we conclude that whenexet ¢ the time derivative of the positive definite function
v(x) = X'Pjx is strictly negative along all trajectories such that co{Ax : i € I(x)} which implies

that they are asymptotically stable. In the particular case characterizeN by?2, this aspect has
already been treated in [15]. In and [20] it is commented the fact that a Lyapunov function like (3.7)
but with min replaced by max does not exhibit this property, in which instance the chattering must be
ruled out. In this sense, the numerical procedure propose in [13] for the determination of a switching
state dependent control has to be further qualified in order to prevent chattering since when it occurs
instability may be observed.

In the literature, the Lyapunov-Metzler inequalities withe ./ fixed, have been introduced in order

to study theMean-SquargMS) stability of Markov Jump Linear Systems (MJLS). In that context,
the Metzler matrix1 = Mo € .# is given andr; represents the infinitesimal transition matrix of a
Markov chaing(t) governing the dynamical system (1.1). In this respect, each component of the
vectorA (t) € A is the probability of the Markov chain to be on the th logical state and obeys the
differential equation

A(t) =MoA(t) , A(0) = Ag €A (3.14)

where the eigenvectads, € A associated to the null eigenvaluddf represents the stationary probabil-
ity vector. Hence, using the fact that the stochastic system under consideration is said to be MS-stable
if

Jim E(Ix(1)]?) =0 (3.15)

for any initial statex(0) and any initial probability patterdp € A, it has been shown (see e.g. [7])

that the system is MS-stable if and only if there exists a set of positive definite matRces , Py}
satisfying the Lyapunov-Metzler inequalities (3.9) for= M. Numerically speaking, this is a simple
case, since (3.9) reduces to a set of linear matrix inequalities.

A relevant point to be discussed now concerns the existence of a solution of the Lyapunov-Metzler
inequalities (3.9) with respect to the variablés .# and{Py,--- ,Py}. Standard Kronecker calculus
shows that fofl € ./ fixed, a solution with respect to the remaining variables exists if and only if the



28 CHAPTER 3. STATE SWITCHING CONTROL

Nr?-dimensional square matriy = .o/ + %% is asymptotically stable, where

A DA 0 0

0 A,BA, - 0
o = ) (3.16)

0 0 . 0

0 0 e AYDAY
and
/| On-1

B =TI |: In_1 :|®|n2, € = [ —Ino1 Inea ]®|n2 (3.17)

with the symbolsp and® indicating the Kronecker sum and Kronecker product respectively 1
denoting a row vector ol — 1 zeros components arig,_; denoting a column vector df — 1 ones
components. Hence, the existence of a solution to (3.9) reduces to the exist€hee 4f rendering
matrix ¢ asymptotically stable. A possible approach to verify the existence of such a matrix is based
on the observation that ammy > 0 andlN € .# impliesall € .#, which from the introduction of this
new degree of liberty makes possible to verify the existenee®f0 such that 7 (a) := &/ + a A% is
asymptotically stable. Putting aside the situation on which all mat{ides - - , An } are asymptotically
stable making possible to set= 0, let us consider the other extreme situation corresponding to
o — +o. Simple determinant manipulations show that a certain number of eigenvalues gees to
while the other ones that remain finite, coincide with itheriant zerof the triple(</, #,%).
Fortunately, these invariant zeros can be determined with no big difficulty from the definition

M I

with the key observation that matrix being constant, that is independentoéndll, imposes to the
solution of € = 0 a vector of compatible dimension with the particular strucgire: [X' --- X],x e

R™. In addition, takingA. € A such thaflA. = 0, multiplying each sub-equation above hy; and
summing up, it follows that
N
Ul =Y Ai A DA | Xx=0
( 2™

(M= A, @A, )x=0 (3.18)

which, can be rewritten as

whereA, , = Z, 1AiAi. Therefore, asr goes to infinity, the eigenvalues gf (a) that remain finite,
tend to the eigenvalues Af\ @A’ which are in the left hand plane if and only if so are the eigenvalues
of A,_. This means that, if there eX|s?ts € A such thaty, | is asymptotically stable, then afyy € .#
satisfyinglMpA» = 0 anda a sufficiently large positive number provifie= allg € .# such that the
Lyapunov-Metzler inequalities are feasible with respect to the remaining varigiles- , Ry }.

Example 2 To illustrate the above point, let us consider a simple example Mith 2, the pair of
matrices

0 1 0 1
A1:|:2 _9],A2:{_2 8] (3.19)
and

o _ [ 051 049
= | 051 -049

} IS4 (3.20)

IWwhile the Kronecker product is more or less standard, the sum requires a formal definition. In this respect we define the
Kronecker sum of two matricd3 andE asD G E =D ®1 +1 ® E. Itis important to recall that the eigenvalues of the Kronecker
sumD @ E are given by all sums of all eigenvaluesfndE.
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The eigenvector associated to the null eigenvaludgis given byA,, = [0.49 051]. We have deter-
mined numerically that the Lyapunov-Metzler inequalities (3.9) have a solution of théTfetra g,

for all o > 6157374 in accordance to the fact that the invariant zeros of the triplé, #,%") are
—0.33,—0.33,—0.334 j0.226which as discussed before, can alternatively be obtained from the eigen-
values of the asymptotically stable mathy, = 0.49A; + 0.51A,, taking all sums.

The Lyapunov-Metzler inequalities introduced in Theorem 6 are difficult to be solved, since one has to
search over the parameters of a Metzler matrix. However, a simple (yet more conservative) numerical
procedure based on line search can be settled to determine its solution. This aspect will be considered
next.

3.3 Guaranteed cost

Let us introduce a guaranteed quadratic cost associated to the proposed state switching control law
(3.10).

Lemma 2 LetQ > 0 be given. Assume that there exist a set of positive definite maffges- , PRy}
andll € .# satisfying the Lyapunov-Metzler inequalities

N
AR+PA+ Y miP+Q<0,i=1- N (3.21)
=1

The state switching control (3.1) witl{x(t)) given by (3.10) makes the equilibrium solutios: 0 of
(1.1) globally asymptotically stable and

/.mx(t)’Qx(t)dt<_ min_ XgPXo (3.22)
Jo |:]_’...7N

Proof It has the same pattern of the proof of Theorem 6. The Lyapunov function (3.7) and the
Lyapunov-Metzler inequalities (3.21) yield

Dv(x(t)) < —x(t)'Qx(t) (3.23)

which after integration gives

vixt) -vix0) = [ D v(x(m)ar
< f/tx(r)’Qx(r)dr,Vtzo (3.24)
0

proving thus the proposed lemma since due to the asymptotical staldiift)) goes to zero aisgoes
to infinity.

The numerical determination, if any, of a solution of the Lyapunov-Metzler inequalities with respect
to the variablegl, {P.,--- ,Py}) is not a simple task and certainly deserves additional attention. The
main source of difficulty stems from its non-convex nature due to the products of variables and so LMI
solvers do not apply. Perhaps, a point to be further investigated is that its particular structurg with
being scalars may help on the design of an interactive method based on relaxation.

In this paper we pursue an alternative route. The main idea is to get a simpler, although certainly more
conservative stability condition that can be expressed by means of LMIs being thus solvable by the
machinery available in the literature to date. The next theorem shows that working with a subclass of
Metzler matrices, characterized by having the same diagonal elements, this goal is accomplished.
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Theorem 7 LetQ > O be given. Assume that there exist a set of positive definite maffges- , Py}
and a scalary > 0 satisfying the modified Lyapunov-Metzler inequalities

AR+RA +y(P-R)+Q<0, j#i=1-,N (3.25)

The state switching control (3.1) with{x(t)) given by (3.10) makes the equilibrium solutios: 0 of
(1.1) globally asymptotically stable and

0 N

/ KO'QUUdL< 3 ¥ (3.26)

JO i=
Proof The proof follows from the choice dfl € .# such thatrg; = —y and the remaining elements
satisfying

N
y ! ; mi =1 (3.27)
j#I=1

foralli=1,---,N. Taking into account that; > Oforall j i =1,--- ,N multiplying (5.24c) byr;,
summing up for allj # i = 1,---N and finally multiplying the result by—* > 0 we get

=z

AR+RA+Q < - mi (P —R)
j#I=1

;i Pj (3.28)

A
Mz

]

which being valid for alli = 1,--- /N are the Lyapunov-Metzler inequalities (3.21). From Lemma 2,
the upper bound (3.22) holds which trivially implies that (3.26) is verified. The proposed theorem is
thus proved. ]

The basic theoretical features of Theorem 6 and Lemma 2 are still present in Theorem 7. The most
important is that the asymptotic stability of the set of matri¢8s,--- ,Ay} still is not required. In
addition, notice that the guaranteed cost (3.26) is clearly worse than the one provided by Lemma 2 but
the former being convex makes possible to solve the problem

L opMin m>o{2fopxo 325} (3.29)

by LMI solvers and line search. The next example illustrates some aspects of the theoretical results
obtained so far.

Example 3 Consider the system (1.1) with= 2 and matricesA;, A2} given by
0 1 0 1
me[9 5] e[ 5 3] a0

which, as it can be easily verified by inspection, are both unstable. Consid@riag and the initial
conditionxy = [1 1)’, problem (3.29) has been solved by line search fiyiagd minimizing its objective
function, denoted by(y), with respect to the remaining variables. Figure 3.4 shows the behavior of
the functiond(y) which enables us to determine its minimum vadiie= 23.56, corresponding to

y" = 11.80. It is important to stress that, in this particular example, the functgp) has a unique
minimum. However, we do not have any evidence that this is a generic property valid in all cases.
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Figure 3.4: Guaranteed cost as a functiory.of

Figure 3.5: Time simulation of the state switching control.

Figure 3.5 shows the trajectories of the state variaklg € R? versus time for the system controlled
by the state switching rule(t) = u(x(t)) given by (3.10) with the positive definite matrices

P

6.7196 16293} P [ 6.0825 21293 (3.31)

~ | 1.6293 10222 2.1293 22206

obtained from the optimal solution of problem (3.29). As it can be seen, the proposed control strategy
is very effective to stabilize the system under consideration.
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Chapter 4

Optimal control

The problem of determining optimal control laws for hybrid and switched systems has been widely
investigated in the last years, both from theoretical and from computational point of view [44], [50],
[47], [48], [49]. For continuous-time switched systems, most of the literature studied necessary and/or
sufficient conditions for a trajectory to be optimal, with the introduction of new versions of the min-
imum principle [31], [34], [35], [36] [51], [52]. The problem is also investigated in [37] for the case

of two subsystems. More in detall, in [53], [35], the switched system is embedded into a larger family
of nonlinear systems that can be handled directly by classical control theory. This idea was further ex-
ploited in [37], where necessary conditions for optimality of the embedded problem are derived using
the maximum principle. When the necessary condition indicate an optimal solution of bang-bang type,
a solution for the original switched problem may be derived. In [38], the problem of optimal control of
autonomous switched systems was studied for a quadratic cost functional on an infinite horizon and a
fixed number of switches. In this setting, the optimal control law can be computed by a discretization
of the unitary semi-sphere. In later works, the same procedure was extended to the case where an
infinite number of switches are allowed, [39], [40].

A special class of optimal control problems concerns autonomous switched systems, where the con-
tinuous control is absent and only the switching signal must be determined [54]. In particular, the
sequence of active subsystems may be arbitrary, or it may be subject to constraints given as a pre-
specified sequence with arbitrary length or as an arbitrary sequence with pre-specified length.

This chapter is organized as follows. The first section studies the optimal control problem for an au-
tonomous linear switched system on a finite time interval. The switched system is embedded into a
larger family of nonlinear systems; sufficient conditions for optimality on a finite horizon are devel-
oped using Hamilton-Jacobi-Bellman equation. No constraints are imposed on the switching and the
performance index contains no penalty on the switching. The presented approach is effective in finding
the optimal switching signal only when the corresponding trajectory is not Zeno, i.e. fast switching
along the switching surfaces does not occur. Exploiting some properties of the optimal control, a
numerical procedure for the solution of the problem based on the discretization of the state space is
proposed.

In the second section the simple but important class of second order oscillating systems is considered
and an algorithm is provided to find the optimal switching rule over an infinite horizon.

33
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4.1 Problem formulation

In this paper we consider the following autonomous linear switched system
(4.2)

wherex € R" is the continuous state and
at): [0, tf] — ¥ ={1,...,N}

is a piecewise constant function of time, called switching signal. We say that the subysiem
active at timet wheng(t) = s. The state trajectory evolution of such a system can be controlled by
choosing an appropriate switching sequekee {(to, %), (t1,51),- - -, (tk,S ) } defined in[to, tf], with

0<K <o tp<t; <...<tgx <tf, ands € .¥. This switching sequence indicates tdt) = s, Vt €

[t, ty1), SO thatx(t) = Ag X(t) in [t, tk1). No assumptions about the number of switchings nor about
the sequence of active subsystems are made. However, for the switched system to be well-behaved, we
consider only non Zeno sequences, which switch at most a finite number of times in every finite interval
[ti, t;] with 0 <t; < t; <ts. Finally, the state of system (4.1) does not undergo jump discontinuities at
the switching times.

Quadratic optimal control problem for autonomous linear switched system can be defined introducing a
quadratic cost functional to be minimized. Assuming that both the subsystems and the cost functional
are time invariant, it is possible to set the initial timetgo= 0 without loss of generality. The cost
functional to be minimized over all admissible switching sequences is given by

t
(%0, %, 0) = /0 f %x(t)TQx(t)dt+ %x(tf)Tsxtf) 4.2)
wherex(t) is a solution of (4.1) with the switching signai(t). The matrice€Q andS are assumed

to be symmetric and positive semidefinite. The optimal switching signal, the corresponding trajectory
and the optimal cost functional will be denotedaist, Xo), X°(t) andJ(xo, x°, 0°) respectively.

In order to obtain a more tractable optimal control problem, the switched system (4.1) is embedded [35]
into the larger family

€ (4.3)
X(0) = xo

parameterized b variablesus(t) subject to the constraints

{xm ~ T u(AX()

us(t) >0, Vs
3 us(t) =1 (4.4)
sc./

The vector(t) = [uy(t) ... un(t)]" can be regarded as a piecewise-continuous input of the embedding
system. The set of trajectories of the embedding system contains the trajectory of the switched system,
obtained constraining(t) to be a simplex, i.e. a vector with(t) = 1 anduj(t) =0, j # i when
o(t)=1i.

The constraints regarding the discrete range(tfcan be handled following optimal control theory in
Pontryagin [56], [55]. Moreover, if the optimal solution of the embedding prohlémis the vertex of

a simplex, it is also the optimal solution of the original switched problem, otherwise only a suboptimal
solution can be determined [37].
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The quadratic optimal control problem for the embedding system (4.3) is thus reformulated as follows.
Given a fixed final times, find the control inputi®°(t) and the corresponding state trajectsftft) such
that the cost functional

1l o7 1 .7
J(xg, X, U) = A éx(t) Qx(t)dt+ éx(tf) SXtf) (4.5)
evaluated forx(t) = x°(t) is minimum. Of course, the infinite horizon optimal control problem is
obtained by lettings — co.

4.2 Finite-time optimal control

In this section we consider the optimal control problem in a finite horizon length.

4.2.1 Solution of the embedding optimal control

In the classical control theory, global sufficient conditions for optimality have been developed as a
strengthening of the necessary conditions. Sufficient conditions introduce certain assumptions about
the regularity of the functions involved and about the behaviour of the cost functional which must
satisfy the Hamilton-Jacobi-Bellman equation [55], [56]. It is easy to see that even the simple case of
a linear autonomous switched systems with quadratic cost functional does not match all these hypoth-
esis. Introducing the concept of generalized solution and with suitable assumptions, however, such
conditions may still be applicable at least for those cases where the optimal trajectories are non Zeno.
First of all, we cannot rely on the differentiability of the solution of (4.3). Nonetheless, for the non
Zeno trajectories, the consequent mathematical difficulties can be overcome considering the definition
of a solution in the sense of Caratidory [57], namely a functior(t) : Rt — R" is said to be a
solution of (4.3), if it is absolute continuous on each compact subsRt cdnd it satisfies (4.3) for
almost allt > 0.

The hamiltonian function relative to system (4.3) and cost functional (4.5) is given by

1
H(xu,p) = 5XTQx+p" 5 UsAx (4.6)
£

In general, the hamiltonian is not regular in the classical sense, having as a functionooé than
one minimum for some& andp. Therefore, the H-minimizing control

{ 1 s=argmin{p(t)" Ax(t)}

0 otherwise

Gs(x(t), p(t)) = (4.7)

cannot be defined univocally for &llIn particular, due to the role of the inpuin the embedding sys-

tem, the switching surfaces coincide with the surfaces whireu, p) has more than one minimum.

The study of the general case is prevented, but classical results still apply if the hamiltonian function
is ‘regular enough’. Here we will focus on the class of switched systems for which the following
assumption holds.

Assumption 1 For each initial statexg the optimal trajectory of the switched systédril) does not lie
on the switching surfaces, i.e. for almost every [0, t¢] the hamiltoniarH (x°(t),u, p(t)) has, as a
function ofu, a unique global minimum io°(t) = G(x°(t), p(t)) for which it holds

H(E (), u°(1), p(t)) < H(C (1), u, p(t)) (4.8)

whenp(t) satisfies a suitable differential equation.
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In general it is not possible to determine a priori whether such an assumption is satisfied or not. How-
ever there are a number of significant cases where the sliding modes can be ruled out, for example
through simple graphical inspection for the class of second-order switched systems.

If Assumption 1 is satisfied, the Hamilton-Jacobi-Bellman equation (HJBE)

O:a—v(x(t),t)Jr
i oV oV (4.9)
+H (x(t),ﬁ <x(t), dx(x(t),tf) , ax(x(t),t)T)
with the boundary condition
Vx(ti),tr) = x(te)TSxt) (4.10)

has a generalized solutidf(x(t),t), which is defined and differentiable for almosttadt [0, t¢].
Before stating the main result of the paper, we introduce a slight modification of the Lemma of
Caratleodory [55], whose proof is omitted for the sake of conciseness.

Lemma 3 Suppose that for almost dlle [0, t], the functionL*(x(t),u) has, as a function ofi, a
unique absolute minimunr(x(t)) for which it zeroes

0=L*(x(t),u"(x(t))) < L*(x(t),u) Yu #£ u*(x(t))

Letu°(t) be an admissible control and (t) be the corresponding state trajectory, such that) =
u*(x°(t)). Thenu®(t) is an optimal control relative tap and the cost functional

W(x0, 57, U°) = /0 L 0e (1), (1)dt = 0

while for any other admissible contral (t) and state trajectory!(t)
W (x0,%°, U%) < W(x0,x", ut)
Theorem 8 Letu°(t) defined in[0, t;] be an admissible control relative t@ andx°(t) be the corre-

sponding state trajectory. P(t) is a symmetric positive definite solution of the system of differential
equations

)= Us()AC(t) (4.11)
se.

—PH) = Y WHOAIPH)+P) 5 w(tA+Q (4.12)
se. s€.Y

w(t) = G(x°(t),x° (1) TP(t)) (4.13)

with the boundary conditior(0) = xo and P(tf) = S, the controlu®(t) is an optimal control relative
to xg and the value of the optimal cost functional is

300.€,) = PO (4.14)
Proof The scalar function
V(x(t),t) = %x(t)TP(t)x(t) (4.15)
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is a generalized solution of the HIBE (4.9). In fact

ov

S X(O,) = xR

ov 1 :

S (O, = X OTPOX)

so that for almost all € [0, t;]

%x(t)TF"(t)x(t) +H (X(t), G(x(t),x(t)TP(t)),x(t) TP(t)) =

+5xOTPE) Y U AX(D) + Sx(1)TQxX(t) =0
s

Moreover it satisfies the boundary condition

V(th),t1) = x(t)TP(t)x(ty) = Sx(te)TSKt)

Define the function N N
* _vv vV T
L*(x,u) = ot (x,t)+H <x7u7 X (x,t) ) (4.16)

From (4.13) it follows

e ) =1 (6.0 (0. 5 0c007) ) -

o,
= ﬁ(x t),t)+
+H (xo(t),l] (xo(t), ‘;z(x‘)(t),t)T) ,?;(X"(t)J)T) =0

sinceV (x°(t),t) is a solution of the Hamilton-Jacobi equation. Having assumed that for almost every
t the hamiltoniarH (x°(t),u,x°(t)TP(t)) has, as a function aif, a unique global wher(t) andP(t)
satisfy (4.11) and (4.12), it follows from (4.16) that for almosttahdvu 5 u* (x°(t),x°(t) TP(t)))

0=L* (x(t),u*(X’(t),x°(t) TP(t))) < L*(X°(t),u) (4.17)

since (4.8) and (4.17) differ for a term which does not depend. ofspplication of Lemma 3 shows
that
tf

L ee . m)dt=0

Ot’ L (t), uL(t))dt > 0

whereu? is another admissible control frorg. Finally, for any given contrali(t) and the correspond-
ing state trajectory(t) it holds

LG u(0) = g 00,0+ (x0).u(0, 5 0x0.07) =

ov ov :
= 5 X)) +L(x(), u(t) + E(X(t)at)TX(t) =
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from which we obtain

/ L*(x°(t), u(t))dt =

_ L( dt+/tfdv ) t)dt =
—/ L0 (£),0° (0)dt-+V 0 (), tr) —V (x0,0) =
= 350, U) ~V (3,0) = 0
and similarly
/Otf L* (ot (t), UL (6))dt = I (%0, X%, uL) —V(x0,0) > 0
Thus

1
J(%0,X°,u%) =V (x0,0) = EX(T) P(0)xo < J(%o,x,ut)

and the Theorem is established.

4.2.2 Solution of the switched optimal control

The optimal controu®(t) for the embedding system (4.13) is always of bang-bang type due to the
nature of the hamiltonian (at least when the optimal control does not involve sliding motions). Thus,
the optimal switchings®(t,Xp) may be readily derived from it.

Theorem 9 Let a°(t,Xp) : [0, tf] x R" — . be an admissible switching signal relative xg and
X°(t) be the corresponding trajectory. I(t) is a symmetric positive definite solution of the system of
differential equations

X (1) = Age1,4)X (1)
—P(t) = A (tx0) P(1) + P() Aget.5) + Q (4.18)
o°(t,xo) = arg mln{x TPt)AX (1)}

with the boundary conditior®(0) = xp and P(ts) = S, thenc®(t,Xp) is an optimal switching signal
relative toxg and the value of the optimal cost functional is

J(%0,X°,0°) = %xg P(0)%o (4.19)
Proof The proof follows trivially from Theorem 8, by letting
0°(t,%) =s with s= argsgy{xo(t)TP(t)Asxo(t)}
Note that for a linear switched system and quadratic cost functional, the optimal switching signal in

(4.18) shows some interesting properties which can be exploited to simplify the numerical determina-
tion of the optimal solution.

Corollary 1 The optimal switching signai®(t,xo), as a function of time, is invariant upon scaling of
the initial statexg.
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Proof Given an initial state, let 0°(t) = a°(t,Xg) be the optimal switching signal. Now consider
the initial stateaxy and define a new optimal control problem with the change of variabie%x
where the system is

{ 2(t) = Agpy2(t)

1
Z0)=2=—ax =X
a
and the cost functional

R aZ s aZ
J(z0.2.0) =~ A z(t)TQz(t)dt+7z(tf)TSz(tf)

The new problem is formally equivalent to the original one except for a scaling in the cost functional,
which does not actually alter the optimal solution in time.

Provided that the optimal switching signal does not depend on the scaling of the initial state, an equiv-
alent formulation of the optimal solution can be obtained referring to a normalized state vector. Such
a formulation may help during the numerical integration of (4.18).

Corollary 2 Leté(t) = % then the optimal switching signal

o __ o & __ o
oltx)=0 (t’ ||xO> =0 %)

whereg°(t, &) is the solution of the system of differential equations

E(t) = (Age(t.g) — traCEAse(. ) E (DE M) E(1)
—P(t) = Al £ P() + PO)As=(1.69) + Q (4.20)
G°(t, &) = argmin{traceP(t)AE ()€ (1)) }

with the split boundary conditions

Xo
O = = —_—
HO= 0= 1 (4.21)
Pts)=S
The value of the optimal cost functional is
O X0 1
I00,X,6°) = 535 P(0)% (4.22)

Proof Observing that for all except the switching instants

%Hx(t)” = %\/xl(t)2+...+xn(t)2 =

_ 2a()ka(t) +- 4 2a()ka(t) _ X0 Aser,X(1)
2% ()2 + ...+ xa(t)2 (%)l
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we can write

d
) XOZXOI

OOl Txor
d
A X(t) B X(t) a”x(t)H
A O OINEGI
)7 t
=Ago(1,6)€ (1) —f(t)||)(>g(t))”A5°("f°) IIXE §||

X(t
=Aso t,50) & (1) —trace(& (1) Ager ) € (1)) E(t) =
= (Ago(1.6) — traCqAge 1 5) & (DE() 1) (1)

Finally, from the properties of the trace operator it follows that
argmin{x’ (t)P()AX(t) } =
—arg mdi/n{trace(P(t)A@,x(t)xT 1)} =
sc.

- argsreny{tl’aCE(P(t)Asf (I)ET 1) }

Thus (4.20) are simply a rewriting of (4.18).

4.2.3 Numerical determination of the optimal switching signal

The determination of the control signal both in the embedding and in the switching case cannot be
performed through a simple integration of a differential matrix equation of Lyapunov type (as in the
linear case). The methodology proposed in Corollary 2 requires the solution of a nonlinear system of
differential equations (4.20) with the split boundary conditions (4.21), due to the dependence of the
system structure on the switching signal.

This problem goes under the name of ‘two point boundary value problem’, as opposed to usual single
point boundary value problems. While in the single point case it is always possible to start an accept-
able solution at one edge of the interval and continue it through the interval by numerical integration,
in the two point case the boundary conditions at the starting (final) point do not determine a unique
solution to start with. Additional troubles come from the discrete nature of the switching signal. The
easiest way to solve a two point boundary value is to use the ‘shooting technique’ [46], where a two
boundary problem is reduced to an initial (final) value problem with a random choice of the initial
(final) conditions to complete the boundary conditions at one end of the time interval. The equations
are then integrated with standard techniques and corrections are made for the initial guess; the process
is repeated until convergence is reached.

Since the initial conditions is given but arbitrary, a slight modification of the shooting technique
may be adopted. The space of the solutions is systematically explored, choosing an arbitrary value
for the unspecified terminal condition (the final stafg )) and computing the corresponding optimal
solution integrating backward in time. Computation continues until the state space is so well covered
with optimal solutions that a suboptimal solution can be determined for any arbitrary initial state.

The invariance of the time-dependent switching rule upon scaling of the initial state comes in handy
to reduce the region of the state space to explore. We can restrict, for example, to the set of final states
with a given norm

Br ={&  ||&s] =1} (4.23)
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since the same scaling applies to the final states, too. Note that, " then.%; is an hypersurface
of dimensionn— 1. As an example, ik € R?, a possible choice for the terminal hypersurface is the
unit semicircle.

Algorithm 1 Procedure for the computation of a suboptimal switching sequence

1. Consider a suitable discretization of the terminal hypersurf@c23)by letting

Br={&) 1 &) e By, i=1,... Np) (4.24)

2. For each point belonging tci?f equationg4.20)are integrated backward in time, with the one
point boundary condition .
{ E(tr) =&

P(tf) =S

(4.25)

in order to determine the initial point of the trajectovgg) and the corresponding switching
sequence = {(t},s)))..... . %) .
- ; X0
3. Given a generic computep = ol

(@) if & = Eéi) for somei, then theoptimal control law=() is appliedforward, remembering
that the switching signal is invariant upon scaling of the initial state;

(b) if & # & for all i, then the control lavz(}) with

.....

is appliedforward, obtaining asuboptimalkolution to the switched control problem.

The proposed procedure is quite simple to implement; however its applicability tends to be reduced
as the dimension of the state space or the number of points on the terminal hypersurface increase.
Numerical problems may also appear during the integration of (4.20).

4.2.4 A Numerical Example

Consider a linear switched system (4.1) with three stable second-order subsystems

0o 1 0o 2 0 15
Al:[z 1} Azz[l 1} A3:[1 1.5}

and the cost functional (4.2) with = 2 and with
10 10 O
Q= [0 1} S= {o 10]
Equations (4.20) are integrated backward in time, considering as a terminal boundary the points on
the unit semicircle; = {& : & =[cog0) sin(8)]T, 6 € [0, m)}. Fig. 4.1 shows the optimal tra-

jectories obtained for the switched system, when the semicircle is divided into 20 points uniformly
distributed. Fig. 4.2 shows the same trajectories scaled so that the initial point of each trajectory
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State trajectories
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Figure 4.1: Optimal trajectories in the state space with final point on unit semicircle, obtained through
backward integration of (4.20).

(marked with a small circle) lies on the unit semicircle. It is apparent that such points are not uni-
formly distributed on the semicircle, even if the final points were so. In the general case, it is not
possible to foresee how well the state space will be covered starting from a particular discretization of
the terminal hypersurface.

Fig. 4.3 shows how the value of the cost functional is affected by the interpolation proposed in Algo-
rithm 1, comparing the optimal value of the cost functional with the suboptimal value obtained with
the algorithm previously described. The suboptimal cost functional (crosses on the figure) is obtained
computing the optimal control law through backward integration for 20 points on the unit semicircle
and then applying Algorithm 1 to 60 points equally distributed on this surface. The optimal cost (solid
line) is obtained considering a finer discretization of the terminal hypersurface (120 points). In this
particular example the range of worsening due to suboptimality is within 10% and it is concentrated in
the areas less covered by initial points.
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State trajectories

0.8

0.6

0.4F

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 4.2: Optimal trajectories in the state space obtained through scaling in order to have initial point
on the unit semicircle.
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Figure 4.3: Comparison between optimal (solid) and suboptimal (cross) cost functionakgwith
[cog0) sin(0)]"
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4.3 The switching oscillating system

In this section our analysis focuses on a second order system of the form

y(t) = —aiy(t) — Bjy(t) +w(t) (4.26)

wherey(t) € R, i € Qq = {1,2,---,ng}, j € Qg = {1,2,--- ,ng}, and the values o and 3; are
known parameters. In mechanical systamsan be interpreted as the damping coefficient Bnés
the stiffness coefficient. The input(t) is a scalar disturbance to be specified later.

The above model lends itself to describe a large variety of physical systems, whose coefficients may
be switched within a finite set in order to improve some given performance. We say that the system
is operating in thei, j)) mode when the underlying parameters take the valogg;). Leto(t) €

Qq x Qp represent the switching signal. Agt) changes, the evolution of the system is switched
from one mode to another. Notice that the positivenesg;aind 8j is a necessary and sufficient
condition for the stability of the singlg, j) mode. However, in general, even if all modes are stable,
there might exist a switching signal that makes the resulting time-varying system unstable, [15].

Let us now introduce the performance variable (scal&@-dimensional vector)
Z(t) = yy(t) + ay(t)
and the performance index
I= / 2(t)'z(t)dt (4.27)
0

The (vector) coefficienty;, j =1,2,--- ,ng and§, i = 1,2,--- ,ng, may depend on the switching
signalo(t) in order to weight differently the contribution of the individual modes in the performance
index.

Our aim is at finding a state-feedback strategy- u(y,y) that minimizes] whenw(-) = 0 and the

initial state(y(0),y(0)) is given, albeit arbitrary. Notice that this problem admits a solution whenever
the switched system is stabilizable, see [15]. This occurs for instance when a @ijglmode is

stable. The problem generalizes to switched system the classical linear quadratic optimal control
theory. It is interesting to stress that the solution to this problem also provides the optimal switching
strategy in the case when the initial state is zerowftd is an impulsive signal. Indeed, the latter
situation reduces to the former by taking an initial stg@® = 0 andy(0) = 1. In addition the optimal
strategy minimizes the variance zit) whenw(t) is a white noise process.

4.3.1 Computation of the optimal switching

The optimal control problem for the switched system can be solved by a suitable adaptation of the
Hamilton-Jacobi equation, see e.g. [18]. To compact the notation we are well advised to rewrite the
system in state-space form

X1) = AgX(t)+But) (4.28)
Z(t) = EU(I)X(t) (429)

where
(3] a[ G &) se[2] i

The solution to the optimal control problem exists if it is possible to compute a continuous, piecewise
differentiable and positive definite functiéh(y,y) =V (X) satisfying

. (oV
0= min (dXAngrx’Egng) (4.30)
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The optimal switching rule is then given by
. . (Vv ,
0 =u(y,y) = u(x) = argmin ﬁA0x+x’Ec,on (4.31)

andV (x(0)) represents the optimal value of the performance index w{(@nis the initial state. It

is obvious that a sufficient condition for the existence of the optimal solution is the existence of a
stabilizing switching rule. For instance, this condition is guaranteed when one of the modes is already
stable or when there exists a stable convex combination d¥itkenyng modes, see e.g. [15].

The solution to equation (4.30) can be found through an iterative numerical procedure. It is expedient
to perform a change of coordinates from the phase plsye to the polar coordinateg, 6). To this
purpose we write

oW 9w

pcog 0) B ov cog0) sin(0)
X= |: psin(0) ]7 W(p,6) =V (x), &—[ 9p 90 } |: —p*lsin(e) pflcOE(Q)

Notice now that the optimal switching rule is invariant with respect to a scaling of the nox{®pf
and a change of sign. Consequently, for each real numbed each initial state(0) € R?, we have
V(ex(0)) = €2V (x(0)). This reflects in simple constraints fo¢(p,8), namelyW(p, ) = pW(6)
andW(8 — m) = W(0). By using the polar coordinates and recalling the definitiondofandEg,
equation (4.30) can be equivalently rewritten as

0=minH(6,0) (4.32)
where
H(8,0) = 2sin(8)((1—Bj)cog8) — aisin(6))W (4.33)
— (sin(8)? + Bjcog8)? + aisin(6)cog 0)) ‘j’g

+(yjcog8) + &sin(0))’ (yjcoq 8) + &sin(6))

As obvious, the role op becomes immaterial and the only unknown is the funcWéf®). This
means that the switching surfaces are straight line in the phase plane. MoreoveH t@ingr, o) =

H(6, o), such surfaces turn out to be symmetric with respect to the origin and the modes activation
regions are cones, as already known, see e.g. [39].

The problem is then to find a solutiéhi®(8), 6 < [0, ), and the optimal switching strategy as a
function of 8, namely
o®=u°(6) =arg minH (6,0) (4.34)

We have devised a simple discretization algorithm to work out the solution. Precisely, consider a
discretization of the upper unit semicirde= kA8, A6 = ,k=0,1,--- ,N—1and take the symmetric
approximation of the derivative, i.e.

dW  W(8+A6)—W(6—A6)

. W(=AB) =W((N—=1)A8), W(m) =W(0)

de 2A0
Now letting
o(0) w(0) H(0,0(0))
o(AB) W(AB) H(AB,0(AB))
s— O'(ZAG) V= W(ZA@) ,h(s) = H(ZAG,O'(ZA@))

o((N—:l)AG) vT/((N—:l)Ae) H((N = 1)A6, 0(N — 1)A8)
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we can rewrite (4.33) as
h(s) = L(s)v+m(s) (4.35)

where theN? square matrixt.(s) and the vectom(s) can be easily deduced from (4.33). Notice that
L(s) is a tridiagonal matrix except for the first and last rows. The algorithm starts with an initial
vectorv,q), for instance a vector with identical positive entries, or the one obtained from the Lyapunov
function of a stable mode. Then, the core of the algorithm is based on equations (4.32), (4.34) and
(4.35). The main iteration step is to compute

aiy(0)
0(i)(A6)
Si) = 0(i)(246)
o) (N - 1)26)
andv;; 1) in the following way
si) = arg n;in(L(s)v(i) +m(s))
Viry = —L(sp)tmisi)n +(1—n)vg

where the above minimization of the vectgfs)v;) +m(s) is considered elementwise ande (0, 1]

is a parameter controlling the smoothness of the solution. The algorithm ends||whem — V(||

is smaller than a given tolerance. The entriespf yield the optimal ci)ntrol strategy in th# grid

points. Finally, the optimal value of the performance inde3°is- p(0)2W(6(0)). This last value, in

the grid points, can be found by taking the appropriate entry of vegter The convergence analysis

of the algorithm as well as its computational complexity are worth of further investigation. However,
the algorithm was tested in many examples and convergence was always observed when at least one
mode was stable.

4.3.2 A special case

This section is mainly devoted to discuss the special situation of equation (4.26) when the stiffness
parametep; is fixed, i.e.Qg = {1}, B = 3 > 0, and the damping parametegr may switch between

two values, i.eQq = {1,2}, a1 = Amin > 0, 02 = Omax> Omin. FOr simplicity we setimin = 0. We
assume that the performance index is the integrgi{f, so thatd = a; andy; = B. In mechanical
systems this corresponds to minimizing the integral of the squared acceleration. The case when also
the parameteB; can switch is briefly discussed at the end of the section.

The algorithm presented in the previous section has been run for different valBesnofamax and

N =500 In all outcomes the optimal switching surfaces have the shape drawn in Figure 4.41. As
can be noticed, one commutation occurs when the velgciljanges its sign, whereas the second
commutation is triggered by the crossing of a straight line with afgl@may, 3). Therefore, the
optimal strategy suggests that a null damping coefficient is more effective ydmaty have the same

sign and the ratig//y is below a given threshold, namelgn(6*). Figure 4.5 shows the value (in
degrees) oB* (amax 3) as a function ofimax for different values of3. In order to illustrate the role

of the switching rule, in Figure 4.6 the phase portrait of the optimal switched system is plotted for the
particular choicermax=1, B = 1.

Finally, we have computed the performance index corresponding to the particular initial condition
0(0) = /2 andp(0) = 1. In Figure 4.7 the optimal performance ind&kis plotted againstimax

for different values of3. The dashed curves correspond to theperformance associated with the
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Figure 4.9: Optimal switching surfaces with both switching damping and switching stiffness

constant damping coefficientyay. It is apparent that the switched damping improves significantly on
the constant specially for high valuesafax.

The transient behavior gft) is plotted in Figure 4.8 in the casg,ax= 1. The solid curve corresponds
to the optimal switching (OS), while the dashed curve is obtained with constant dampipgThe
advantage of commuting @, = O at appropriate time-instants is apparent.

To enlighten the potentiality of the algorithm, we have considered the same optimization problem
by allowing, in addition, for a switching stiffness parameter, nantgly= {1 ,2}, B1 = Bmin > 0,

B2 = Bmax > Bmin- For the sake of conciseness, we report the results only for thecgase= 1,

Bmax= 1, Bmin = 0.5. In Figure 4.9 the resulting optimal switching surfaces are shown. This more
complicated switching rule obviously gives a better performance. For instance, the performance index
associated witl#(0) = 7/2 andp(0) = 1is J° = 0.664, that is lower than the corresponding points in
Figure 4.7 (curveg = 1andf = 0.5).
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4.3.3 An application

This section discusses a practical application of the optimal switching control design presented before.
Precisely, we consider the problem of comfort-oriented control of a semi-active suspension system
in road vehicles. Our aim is to compare the achievable performance with the one provided by the
classical switching rule based on the so-called two-state Sky-Hook (SH) approach, [43]. The model is
as follows:

ME®) = —c)(E()— &) —kE M) — & (1) +Kas— Mg
mE(t) = c(t)(E(t) — &) +K(E () — & (1) — k(& () — & (1) — khs+ ki —mg
¢(t) = —nc(t)+ncn(t)

where& (1), &(t) and & (t) are the vertical position of the body, the unsprung mass and the road
profile, respectively. The coefficienkd andm are the quarter-car body mass and the unsprung mass
(tire, wheel, brake, etc...), respectively. The parameteksandk; are the bandwidth of the active
shock absorber, the stiffness of the suspension spring and of the tire, respectively. The coefficients
As and 4y are the length of the unloaded suspension spring and of the tire. Fioglyand cin(t)

are the actual and requested damping coefficients of the passive shock-absorber. In order to simplify
the computations we assume thgais large enough so thait) ~ cin(t). Moreover we consider a
genuine switching strategy, so thet) = ¢; can assume only two values, namejy= cmin > 0 and

C2 = Cmax > C1, to be specified later on.

The control objective consists in minimizing the chassis vertical accelerétt()rh)y a suitable choice

of the control variable(t) € {cmin, Cmax}- IN the classical two-state SH approach [43], the system is
switched according to the sign éft)(&(t) — & (t)). In order to fit this example in the framework of
the present paper, let us take the variatiégst) andd&;(t) of &(t) andé;(t) around an equilibrium
point associated with zero road profile, arriving to the system

MoE(t) = —Ci_(fff(t)—_éft(t))—k(&f(t)—55t(t)) (4.36)
M3 (1) = G(SE(N) — & (1) +K(BE (D)~ 05 (1) ~k(B&E(M) ~&(1)  (437)

Notice that this is & DOF system. In order to apply the optimal switching control design previously
discussed, we make the (realistic) assumption tha sufficiently high so that the displacement of
the tire can be approximated by the road profile, io&;(t) ~ & (t). Consequently, letting(t) =
0&(t) — & (t), the approximated model can be written as

Jt) =~ SHy(0) — 1 oy(t) + &)

Thus, we have recovered equation (4.26) vaith= ¢ /M, B; = B = k/M andw(t) = & (t). Moreover,

to improve comfort, it is advisable to minimize the integralygf)>. The situation is exactly the

one discussed in Section 4, and, consequently, the optimal switching surfaces are those qualitatively
depicted in Figure 1. The following parameters have been selected, se®29%100kg, m = 50kg,
k=2.0x10°N/m, k = 2.5x 10°N/m, ¢; = Cmin = 3.0 x L’°Ns/mandc, = Cnax= 3.9 x 10°Ns/m.

The optimal switching angle has been computed on the bagis,gfand 8 through the numerical
algorithm of Section 3 wittN = 500grid points. It turns ou8* = 86.6°.

Two sets of simulations have been carried out, by applying both the Sky-Hook (SH) and the optimal
switching (OS) control laws to th2-DOF system (4.36), (4.37). The first set of simulations refers to
the response to a unitimpulse on the road acceleratfonnamely a ramp on the road profile. The first

row of Table 1 reports the integral of the squared chassis acceleration obtained with different control
strategies. The notation P@nd P$ refers to a passive suspension with fixed damping coefficient
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y | OS | SH | P§ | PS |

JSy(t)2dt for & = &(t) | 7.446 | 8.288 | 26.548| 8.307

[fgoz g for &~ 0.623 | 0.787 | 3.558 | 0.719

Table 4.1: Performance of the different control strategies under an impulsive or a white noise distur-
bance
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Figure 4.10: Time history of the integral §ft)? due to an impulse of; (t)

equal tocmin andcmay, respectively. As apparent from Table 1, the algoritB®outperforms all other
strategies.

Figure 4.10 shows the integral of the square of the chassis acceleration against time. It can be seen that
OSis capable of lowering the acceleration in the transient better than SH, even if its design is based
on a simplifiedl-DOF model.

In the second set of simulations the road pro&ilé&) has been generated as the double integral of
a sample realization of a white noise process with poy/r= 0.1. The performance of the four
algorithms above has been measured as the power attenuation on the chassis acceleration, namely the

ratio
_ Jo y(®)3dt
fo & (t)2dt

This value, forT = 20 sec, is reported in the second row of Table 1. Figure 4.11 shows the behavior

of the acceleration. The plot has been restricted to an interval of 2 seconds, in order to better represent
the effects of the commutations. TI@S strategy outperforms SH at the price of faster switching
commutation and shorter dwell intervals.

Finally the power attenuatio®t as a function ofl is plotted in Figure 4.12.
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Chapter 5

Output feedback control

5.1 Preliminaries

Consider linear switched systems of the following form

Xt) = AgpX(t)+Bwt) (5.1a)
y(t) = Ca(t)X(t) + DW(t) (5.1b)
Z(t) = EguX() (5.1c)

which evolves from zero initial condition. The vecto$) € R", w(t) € R™, y(t) € RP andz(t) € RY
denote the state, the exogenous disturbance, the measured output and the controlled output variables,
respectively. The switching signal is represented by a fundigh defined as

ot):t>0—-N:={12,---,N} (5.2)

making clear that at each instant of titne 0 one and only one amorngiknown linear systems defined
by matrices

A B
S=|1GCG D | ,VieN (5.3)
E O

are switched on. To ease presentation we have considered that the controlled vérjaddes not
depend directly on the external disturbame). Certainly, based on the results provided here, the
reader does not have difficulty to treat more general situations.
Assuming thatv(t) is an impulse disturbance (to be precisely defined afterwards) and that a quadratic
cost functionall(g), as in equation (1.3), is given, the purpose of this paper is to design an output
feedback control law of the form

o(t) =u(y(r) , VT <t) (5.4)

in such a way that the originR= 0 is a globally asymptotically stable equilibrium point. Moreover,
a quantitative measure on the quality of the proposed policy (5.4) with respect to the optimal one is
provided. This last requirements in given in terms of a lower and an upper kiyrahdJs,p such
that
oes

where. defines the set of stabilizing switching rules. This last point is of particular importance since
as itis largely recognized, the determination of the optimal policy and consequently the correspondent

55
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minimum costinfscnJ(0) is extremely hard even for linear switched systems constituted by a small
number of linear systems of low order. This problem will be tackled in more details in CiHaptew
consider again the switched autonomous system

X(t) = Aa(t)X(t) (56)

and the switching rule
u(x) := arngiInx’P.x (5.7)
IS

wherePR, are suitable positive definite matrices. The next, results, already introduced in CBapter
provides an upper bound for the optimal cost.

Theorem 10 Let Q; > 0,i € N be given. The following statements are true : If there exist a set of
positive definite matrice§P;, --- ,Py} andl € .4 satisfying the Lyapunov-Metzler inequalities

N
AR+PRA+ 5 miP+Q <0 (5.8)
=

for all i € N then the state feedback switching contmgt) = u(x(t)) makes the equilibrium solution
x = 0 of (5.6) globally asymptotically stable and

[ X0/ Qe )t < vio) 59)
As for a lower bound, the following result can be stated.

Theorem 11 LetQ; > 0,i € N be given and define the functidt{x) := maxcnyXBx. The following
statements are true : If there exist a set of positive definite mat{legs: - , Py} andl € .4 satisfying

the inequalities
N

AR +PAj + 3 &iR+Qj >0 (5.10)
k=1

fori, j € N x N then the following lower bound holds

00

inf [ X(t)'QqyX(t)dt >V (xo) (5.11)
e’ Jo

Proof The proof of par) follows from the determination of the Dini derivative of functibfiix(t))
along any trajectory of (5.6). Considering the bgt) := {i : V(x) =XBx, i e N} ando = j €N
arbitrary, making use of (5.10) we obtain
Vi) = maxx (A;R +RA0)X
el(X
> X(AR+RA)X

N
> —XQx— Y mix'Rx
k=1
> —XQjx (5.12)

where we have used the fact thé®x > x A for all k € N and thatll € .. Consequently/, (x) +
XQgx > 0for all (x,0) € R" x N, which by integration from zero to infinity yields the desired result
(5.11) since the optimal trajectory satisfig€®) = xo andx(c) = 0.

Theorem 11 allows an useful interpretation on the existence of an optimal control policy. Inequalities
(5.10) are always feasible whéph > 0 for all i € N as it can be readily verified witR — 0. On the
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other hand, if (5.10) admits un unbounded feasible solution then the lower Mgugo— +o and we
can conclude that the optimal control problem (5.11) does not admit a stabilizing solution. To prevent
this undesirable situation let us consider- 0 € A the eigenvector associated to the null eigenvalue
of N € .#: andA € A. Multiplying (5.10) successively by; > 0 andA; > 0 and summing up for all
i,j € NxN we obtain
A R, +P,A,+Q) >0 (5.13)

Hence, assuming that there exidts& A such thatA, is asymptotically stable, the inequality (5.10)
implies that

N LI
ZviPl g/ ehtQ, eMidt (5.14)
< 0

Since the right hand side of (5.14) is bounded, the conclusion is that the lower bound of the optimal
cost (5.11) is bounded as well. Moreover, it is important to remember that under the same condition,
that is, the existence of an asymptotically stable convex combination, from Theorem 6 the Lyapunov-
Metzler inequalities admit a solution providing thus a stabilizing control and an upper bound to the
optimal cost. In the next section these results are generalized to cope with the more general models for
switched linear systems given in (5.1).

5.2 Closed Loop Performance

In this section, the following version of the switched linear system (5.1) is considered where, for the
moment, the output variable is not taken into account. Assume that

X(t) = Aa<t)X(t)+BW(t) (5.15a)
Z(t) = E0<t)X(t) (515b)

evolves from zero initial condition and thexx) is a stabilizing switching state feedback control. For
eachk=1,--- ,man exogenous input of the form(t) = e.d(t) whereg, € R™ is thekth column of

the identity matrixly, is applied and the corresponding controlled output is obtained. Based on this,
we define the following cost functional associated to the stabilizing control paligyas being

J0):= kzlnzkn% (5.16)

The interpretation of this cost steams from the fact that for a fixed stabilizing control @ofigy any
trajectory of (5.15) with zero initial condition and(t) = ed(t) is alternatively provided by the same
equations subject to the initial conditiei0) = Be and inputw(t) = 0. This fact is also important to
make clear that matri in (5.15a) can be considered, with no loss of generality, independertof.

Indeed, if the input matrix were dependent on the switching policy then the initial condition would be
X(0) = Bg(g)&, With B, (o) being a fixed matrix for alk = 1,---,m. Hence, the results obtained so

far can be applied to get lower and upper bounds to the optimal cost (5.16) for both continuous and
discrete time cases.

Theorem 12 Consider the switched linear system (5.15) with zero initial condition and d€fine
E/E; for all i € N. If there exist a set of positive definite matrigdd, -, Py} and M € .4 (4y)
satisfying the inequalities (5.8) then the switching control strategy = u(x(t)) givenin (5.7) is such
that
J(o) < miRrgTr(B’P. B) (5.17)
le
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Proof It follows from Theorem 10. Indeed, considering successively the initial condition= Be,
andw(t) = 0 we have

m

Jo) < rlg\p(B@)  (Be&)
k=1
< mi B
< riQIR?k l( &) R (B&)
< EwTr(B RB) (5.18)

which proves the proposed theorem.

In contrast to the result provided by Theorem 10 where the performance of each control policy was
dependent on the initial statg € R", Theorem 12 shows how to associate an unique stabilizing policy

to a series of impulse-type perturbations applied to each external input channel. The consequence is
somewhat similar to that observed in the classitalheory of LTI systems where the control policy

is effective to deal with perturbations of a wide frequency range acting on each input channel. In the
next theorem the same reasoning is applied to lower bound calculations.

Theorem 13 Consider the switched linear system (5.15) with zero initial condition and d€fine
E/E; for all i € N. If there exist a set of positive definite matrigdy,--- Py} and M € 4 (Ay)
satisfying the inequalities (5.10), then the following lower bound holds

inf J(0) > maxTr(B'RB) (5.19)

oeN ieN

Proof Considering successively the initial conditief®) = Be; andw(t) = 0, Theorem 11 yields

inf J(o) > max(Ba< ) (Be&)

oeN 1I6

m

rigaNszl(B@)  (Bex)

Y

vV

maxTr(B'PB) (5.20)
ieN

which proves the proposed theorem.

The numerical determination of the upper and lower bounds of the optimal switching policy is involved
and costly. The main difficulty is concentrated on the determination of the Metzler ribgiRN*N
which certainly requires further research efforts. For the moment this difficulty is circumvented by
replacing the search for a Metzler matrix by the determination of a sgatar indicated in Corollary
7. This approach certainly introduces some conservativeness on the calculation of the final bounds but
is numerically efficient. However, fdi € RN*N fixed, the associated lower and upper bounds follow
from the solution of convex programming problems. Indeed, the minimization of the right hand side
of (5.17) written as
. . /

rirgw{Plﬁrgngq)m)Tr(B RB)} (5.21)
where®(I) is the convex set of all positive definite matrid@s € N satisfying the LMIs (5.8) for
some fixed Metzler matrixl € RN*N| shows that the matricd3,i € N can be calculated from the
internal minimization for each € N and afterwards those correspondent to the minimum cost are
selected. Similar reasoning can be applied to get the maximum lower bound. The next example
illustrates the results obtained so far.
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Figure 5.1: Upper and Lower bounds.

Example 4 Consider a continuous time switched linear system (5.15a)-(5.15b) defined by the follow-
ing matrices

0O 1 0 0 1 O 1 0
A= 0O 0 1|,A=]0 O 1|,B=| -1 -1 (5.22)
-2 -2 0 0 -2 -2 0 1

which are not stable but admit a stable convex combination. Mati@es diag{1,1,2} and Q. =
diag{2,1,1} define the associated caKio) given in (5.16). With a Metzler matrix of the form

P q
n [ — ] € M. (5.23)
we have determined from Theorem 12 and Theorem 13 lower and upper bouf@sfar< 100and

10< g < 100 Figure 2.4 shows that the lower bound is almost insensitive to the particular value
of the Metzler matrix. The same, of course, does not hold for the upper bound. Notice also that a
convenient choice of the Metzler matrix provides precise estimation of the interval where the optimal
solution ofinf ¢ J(0) belongs to. For instance, fgg= 100andq = 20 we obtainJy,; = 4.2500and

Jsup= 4.7158which corresponds approximately to a gap between the lower and upper bound of about
10%

5.3 Output Feedback Control

In this section the main control problem reported in this paper is solved. It consists on the design of a
stabilizing full order output feedback controller which minimizes the upper bound of the cost function
J(0o) introduced in the previous section. To this end, the model (5.1) given again for convenience, is
considered

X(t) = Aa<t)X(t) + BW(t) (524&)
y(t) = Ca(t)X(t) + DW(t) (524b)
z(t) = Egux() (5.24c)

where the switching policy is of the form (5.4) since the switching strategy must be dependent only
on the available measurements. The functién is indeed a functional of(-) in the sense that(t)

is viewed as the input of the following switched linear filter that rules out the change of the switching
index. Introducing the full order switched filter

R(t) = A X(t) + BoY(t) (5.25)
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with zero initial condition, Wheréﬁq,éi), i=12--- Nare matrices to be determined, putting (5.24)
and (5.25) together we obtain

X(t) = AgpX(t)+Bypwi(t) (5.26a)
2t) = EgpX(t) (5.26b)
whereX =[x %] € R?"and
- - 0 ~ B o
A.:[él%cl A],Bi:{BiD],Ei:[Ei 0] (5.27)

which evolves from zero initial condition. Therefore the solution of the stated output feedback switch-
ing control design problem requires the determination of the switched filter madxices B; for all

i € N and a switching policy, such that the enlarged switched linear system (5.26) is asymptotically
stable. However, in doing so, only switching rules that depend exclusively-pare permitted. In

order to apply the results of the previous section, we limit the search for a solution of the Lyapunov-
Metzler inequalities with a prescribed structure so as to structurally incorporate switching rules that
depends only on the available information. Therefore, let

".[3/(, ;” deV #£0 (5.28)

for all i € N and notice thairgminey X P.X = argminey X XiX. Hence, to fulfill our purposes, we need
to find a stabilizing rule of the forna(t) = u(X(t)) where

u(x) = arg irgi]m?m (5.29)
In the sequel the goal is to determine a filter and a switching policy of the form (5.29) such that the
upper bound of cost functiond(o) provided by Theorem 12 is minimized. To ease the presentation
we denote b)), := E/E; € R?™2" andQ; := E/E; € R™" for all i € N.
Considering the augmented switched linear system (5.26), from Theorem 12 it is seen that if there
exist a Metzler matrixX1 € ./, positive definite matriceB of the form (5.28) and the filter matrices
A andB; for all i € N satisfying the Lyapunov-Metzler inequalities

=z

13

AR+RA+ Y miP +Qi <0 (5.30)
=1

for i € N then the switching control (5.29) makes the equilibrium soluien 0 of (5.26a) globally
asymptotically stable with the associated cost

J(u) = minTr(B;RB,) (5.31)

where? = g(0) € N is fixed and supposed to be provided by the designer. However, with no great
difficulty, it can be determined by minimizing the associated cost whenever desired. The next theorem
gives a complete solution to the output feedback switching control design problem stated before.

Theorem 14 There exist~matriceéi andB;, i e N for which inequalities (5.30) are satisfied for some
positive definite matriceR of the form (5.28) if and only if there exist a Metzler mafrixc .., a
positive definite matriX, a set of positive definite matric¢g;, Rj) and a set of matricek; for all
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i,j € NxN, such that the following matrix inequalities

N
A,-’Zi+ZiA.-+Z miR;+Qi <0 (5.32a)
=1
AX+XA+CL+LC+Q <0 (5.32b)
oz | Ri—4 44 i L
Ri < %, R X2z >0, i#] (5.32¢)

hold. Moreover, assuming that inequalities (5.32a)-(5.32c) are satisfied, the output feedback switching
control o(t) = u(X(t)) defined by

u(r) = arg mR|Inx’V (X—2Z) g (5.33)
le
whereV is an arbitrary nonsingular matrix, makes the equilibrium solutioa 0 of (5.26a) globally
asymptotically stable and the associated cost is givel(by= minjcy Tr(W) where the linear matrix
inequality

W B'Z BX+DL
(] Z Z >0 (5.34)
° ° X
holds for alli € N.
Proof Consider symmetric matricés ¢ R?" x R?" for all i € N of the form (5.28), that is
~ X Vv
'_[V’ e }, dev #0 (5.35)

and define the nonsingular matricBse R?" x R?" as

T = [ —)A(:ElV’ 'g ] (5.36)

for alli € N. Therefore, there exist positive definite matri€gs € N satisfying the Lyapunov-Metzler
inequalities (5.30) if and only if

XA +LGC —-M XA +LG

N
S:= i/( (R +RA + z P,+Q.>Ti<0 (5.37)
for alli € N. Introducing a new one-to-one set of variables, namely
Z = X-vXW (5.38)
L = VB (5.39)
M = VAV (X-2Z) (5.40)
each term of the matrix sum appearing in the left hand side of inequality (5.37) can be expressed as
follows
FBAT = { 4 ZA } (5.41)

N N S\ — L7
-|-I/<Z 7Tji|5j)-|-i _ Z { +(Z; Zl)(xo_zl) l(ZJ Z) (())] (5.42)
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AT Q Q

where we have used the fact that, from (5.3:8) we hgve V/(X —zi)—lv and thatll € ... Usirlg
the Schur Complement to (5.35) it is seen tRat O if and only if X > Z; > 0 which indicates thak;
is well defined. Hence defining; := Z; + (Z; — Z)(X — Zj)1(z; — ) for all i, j € N x N we obtain

ANZ+ZA+ 35 Y+ Q .
AZ+XA+LC+Q —M  AX+XA+LG+CL +Q;

Let us assume that inequalities (5.32a)-(5.32c) are satisfied. Since the linear matrix inequalities (5.32c)
imply that X > Z; > 0 for all j € N, selecting any nonsingular matrix € R™" and settingX, =
V(X —Z)"V we getP > O for all i € N. In addition, applying the Schur Complement to (5.32¢)
it is immediately verified tha§J=1 iR > ZJ=1 ;i Yij so that the first block diagonal element®f
is negative definite as a consequence of (5.32a). Due to (5.32b), the second block diagonal element
of matrix § is also negative. Consequently, |mposMg ALZI + XA + LG + Q; we conclude that
§ < 0. Hence, determining the switched filter matri@gsndA; from (5.39) and (5.40) the augmented
Lyapunov-Metzler inequalities (5.30) hold.

Vice-versa, assume that the inequalities (5.30) hold for some positive definite fRatfxhe
form (5.28) and matriceB;, A; of the switched filter. Adopting the change of variables introduced in
equations (5.38)-(5.40) it is immediately verified tBat O for all i € N. As a consequence, the linear
matrix inequalities (5.32b) are verified. On the other hand, lefng- Y — &l andRj =Yij +£ln
with € > 0 small enough, the linear matrix inequalities (5.32c) are verified and inequalities (5.32a)
hold due to the fact that the first block diagonal elemerf; & negative definite.

To conclude the proof notice that the stabilizing property of the output feedback switching rule
(5.33) is a consequence of Theorem 12 and the determination of maXidesall i € N, as in-
dicated before. Once again, from Theorem 12 the cost associated to this control pdijay is
miniey Tr(BjPB;) which can be rewritten a¥{u) = minicy Tr(W) with the additional matrix variable
W satisfying\M > B’PBZ for alli € N. Using the Schur Complement, the equivalent inequalities

§= (5.44)

W B(PT.
{ . BT ] >0 (5.45)
forall'i € N provide (5.34). This concludes the proof of the proposed theorem. ]

Wheneverl € . is fixed, the matrix inequalities (5.32) and (5.34) reduces to LMIs and so can be
solved with no difficulty by the machinery available in the literature to date. Another possibility is to
restrict the set of Metzler matrices to those with the same diagonal elements. In this case, Theorem 7
applies from which a simplified version of Theorem 14, expressed by LMIs and an additional scalar,
follows. Calling®(I) the set of all variables satisfying the LMIs (5.32) and (5.34), the determination

of the best output feedback switching control is done from the solution of the optimization problem

TN {Zaﬂ,- ,LiTv:&edJ(ﬂ)Tr(W)} (5:49)
where the inner problem is convex. Once it is solved for éach, the global (discrete) minimization
with respect td € N is then performed. Since the indéx= o(0) may be defined by the designer, it
can be involved in the optimization process. However, keeping in mind problem (5.46) it appears that
a good choice would bé=i € N being thus determined by the outer optimization problem.
After the determination of the involved matrix variables, the filter matrices are readily calculated from
the simple formulas

B = VL (5.47a)
A = VIM(X-2z)"v (5.47b)



5.3. OUTPUT FEEDBACK CONTROL 63

whereM; := A’Z + XA + LG + Q; for all i € N. At this point it is clear that the nonsingular matrix

V defines a particular state space realization of the switched linear filter making invariant the output
feedback switching rule. In other words, Theorem 14 provides a parametrization of all feasible filters
with B, for all i € N presenting the prescribed block structure (5.28).

The full-order filter is not in the observer form, i.e&- A — BiCi. To recover this condition, an
additional constraint, unfortunately non linear, has to be added (the simple check is left to the reader)

M = (VA-LGC)IV iX-2z)
AZi+ XA +LGC+Q (5.48)
A notable exception can be devised by lettigg= 0, so overlooking the cost associated to the con-

trolled output variable(t), vt > 0. Indeed, in this particular but important case, we have the following
result.

Corollary 3 Assume that there exist a Metzler matrlxc .#;, a positive definite matriX, a set of
positive matriceg; and a set of matricek; for all i € N, such that the following matrix inequalities

N
AZ +ZA + Z miZy < O (5.49a)
=1
AX+XA+CL+LC < 0 (5.49b)

are satisfied. The output feedback switching condr) = u(X(t)) defined by

u(x) = arg ni1in>‘<’Zi>‘< (5.50)

makes the equilibrium solution= 0 of (5.26a) globally asymptotically stable whet) satisfies the
differential equation of the filter (5.25) in observer form with

B — _x-l, (5.51a)
A = A-BG (5.51b)

Proof The proof relies to Theorem 14, by lettidy — £Z; with € > 0 arbitrarily small andV = —X
yielding Rj; — Zj for all i, j € N x N. Indeed, notice that the condition (5.48) for the filter to be in
observer form is satisfied fargoing to zero and that

arg minkV’/ (X —ez) " Wr =
ieN

arg mlilnf(’(x +(Z7 Y e—xH R~
le

arg g{lnf(’ £Z;X ~ arg g]l%n)?’ ZiR (5.52)

holds.

The conclusion is that if there exist N gains that make the filter quadratically stable, see equation
(5.49b), then the usual solution to the Metzler-Lyapunov inequalities (see the state feedback, equation
(5.49a)) provides an output feedback stabilizing switching rule calculated from the state variable of the
observer. It is important to keep in mind that if we want to determine a switching strategy by minimiz-
ing the costl(u) then this solution although stabilizing is not the best that can be done. Moreover, it
should be noticed that the output feedback strategies invoked by the theorems presented so far require
the existence of state-observer injection matricess X 1L;, i € N that render the set of matrices

A + LG quadratically stable (see e.g. equation (5.49a)).
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Figure 5.2: Time simulation.

Remark 2 It is important to stress that there is no difficulty to get the version of Theorem 14 asso-
ciated to the modified Lyapunov-Metzler inequalities appearing in Theorem 7. The bilinear matrix
inequalities are replaced by LMIs with an additional parameter that can be determined by line search.
The results follow the same pattern of each mentioned theorem and corollary, being thus omitted.

Example 5 Consider a continuous time switched linear system (5.24a)-(5.24c) defined by matrices
A, Ay, Q1, Q2 andB given in Example 4. We have considekée- [1 1] and different measurements
for each one of the two modes definedy=[1 —1 0] andC; = [1 0 0. The Metzler matrix has been

setas
n— { —-100 20

100 _20} € M, (5.53)

The optimal filter and the associated output feedback switching control have been determined from the
solution of the convex programming problem (5.46) with i € N, yieldingJ(u) = 12.9725 Each
subplot in Figure 5.2 shows in solid line the time evolution of the state variables of the system and in
dashed line the time evolution of the state variables of the filter. ErariD, 10) we have imposed the
constant output switching control(t) = 1. It is clear that both the system and the filter are unstable.

Att = 10the output feedback switching control is connected and the closed loop system (and the filter)
converge to zero, showing that the proposed control is actually effective for stabilization.

5.4 Practical Application

This section discusses a practical application of the output feedback switching control design presented
in Section4.3.3. The problem consists in the design of a switching control strategy for comfort-
oriented semi-active suspensions in road vehicles, and is motivated by the paper [43] where the so-
called sky-hook (SH) approach is introduced and the recent paper [29], where a new strategy, hence-
forth referred to as ADD (Acceleration Driven Damper) strategy, is proposed that improves on SH in
certain frequency ranges of the road profile disturbance. The model is as follows:

ME®M) = —c(t)(E(t) - &(t) —k(E(t) - &(t) +kAs— Mg
mé (t) c(t)(§(t) — & (t)) + k(& (1) — & (1)) — ke (& (1) — & (1)) — kAs+ kil — Mg
¢(t) = —Bc(t)+Bcin(t)
whereé (1), &(t) andé (t) are the vertical position of the body, the unsprung mass and the road
profile, respectively. The coefficienkd andm are the quarter-car body mass and the unsprung mass

(tire, wheel, brake, etc...), respectively. The coefficightk andk; are the bandwidth of the active
shock absorber, the stiffness of the suspension spring and of the tire, respectively. The coeffjcients
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and; are the length of the unloaded suspension spring and of the tire. Fio@)lyandcin(t) are

the actual and requested damping coefficients of the passive shock-absorber. In order to simplify the
computations we assume ttais large enough so thatt) ~ cin(t). Moreover we consider a genuine
switching strategy, so thatt) can assume only two values, namely, andcmay to be specified later
on.

The control strategy consists in minimizing the chassis vertical accele&@tiopiy a suitable choice

of the control variable(t) € {cmipn, Cmax}- IN the classical two-state SH approach [43], the system is
switched according to the sign &ft) (& (t) — &(t)), whereas in [29] the switching law depends on the
sign of & (t) (& (t) — &(1)).

In order to fit this example in the framework of the present paper, let us take the varidgfignsand

o0& (t) of &(t) andé;(t) around an equilibrium point associated with zero road profile, arriving to the
system

) = Add()+Bré(t)

yt) = Cgé(t)+d(t)

Z(t) = EoE(t)

whered(t) is the measurement noise and

0 1 0 0
A= 0 0 0 1
k/m  Gnn/m  —(K+k)/m —Cmin/m
[0 1 0 0
A — —k/M  —Cmax/M k/M Cmax/M
2 = 0 0 0 1
| K/M Graym  —(K+k)/M  —Cmay/m
E2 = [ k/M —CnayM k/M  Cmay/M |
0
0
B = 0
ke/m

andC, depends on the choice of the measured variable. The state §éttaontains the chassis dis-
placemen®dé (1), its derivative, the tire displacemed; (t) and its derivative. Again, the disturbance
vectoré; (t) is the road profile. One reasonable set of measurements is given by the&trpke: (t)
and its derivative, leading two

1 0 -1 O
Ci=C = [ 01 0 -1 } (5.54)
We also consider the alternative choice
C, = { 0 1 0 1 (5.55)
_ —k/M  —Cmax'M  k/M  Cmax/M
C = { 0 1 0 1 (5.56)

that corresponds to measuring the body acceleration and the stroke derivative.
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In the following we apply the state-feedback and output feedback stabilization strategy to the suspen-
sion system in order to minimize ti# norm of the chassis acceleratlétt) with respect to impulsive
signals on the road profile acceleratlar(nt) This is indeed a realistic situation including road profiles
described by ramps, in the deterministic setting, or double integral of a white noise, in the stochastic
case.

Consequently, we have to rewrite the model in order to fit in the formulation given in (5.24a)-(5.24c),

in which .
_ | &)
wo=| 54 |

andz(t) = E(t). To do that, define

xt) = &t)—&(®)
() = E1)—&)
xa(t) = &) =& ()
a(t) = &(t)-&(t)

With these new variables, the system can be equivalently rewritten as

() = Agx(t)+Bu(t) (5.57)
y(t) = Cox(t)+Dw(t)+Cs(§ £ (1) —x(t)) (5.58)
z(t) = Eox(t)+Eq(&(t) —x(1)) (5.59)

whereAq, Az,Cq,Cy, E1, E> have been already defined and

0 00
|-100 forn o

B= 000’D_[00r2]
100

The parametens; andr; reflect the measurements uncertainties and are specified later.

Notice now thatE, (& (t) — &(t)) = 0andCq(E(t) — &(t)) = O, for eacho = 1,2 and both choices of

the output matrices indicated in (5.54)-(5.56). Therefore system (5.57)-(5.59) is identical to (5.24a)-
(5.24c). The output feedback stabilization problem has been solved by taking the following set of
parametersM = 400kg, m= 50kg, k = 2.0 x 10*N/m, k = 2.5x 10°N/m, Cmin = 3.0 x 10?’Ns/mand

Cmax= 3.9 x 103N s/m. For these parameters the two matriégsindA; are both stable (although with
poorly damped oscillating modes) hence, our main scope here is to improve the transient dynamical
behavior of the system by minimizing the vertical acceleration of the chassis.

Two sets of simulations have been carried out. The first set refers to the respdr(!;)stofa unit im-

pulse on the road acceleraué,n(t) The first row of Table 1 reports the integral of the squared chassis
acceleration obtained with different control strategies. The symbols in the table have the following
meaning:

e OF; : Output feedback switching control designed with the output matrices of equation (5.54).

e OF, : Output feedback switching control designed with the output matrices of equations (5.55)-
(5.56).

e SF: State-feedback switching control.

e SH : Two-state sky-hook strategy.
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y | OFf [ OR, [ SF | SH [ADD | P§ | PS |

e E(t)2dtfor & (t) = (t) | 7.767 | 7.835| 7.721| 8.288 | 8.150 | 26.548 | 8.307

-
fg;’%‘i‘t for T=20 | 0.718| 0.697 | 0.643 | 0.787 | 0.823 | 3.558 | 0.719
Jo or

Table 5.1: Performance of closed loop strategies
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Figure 5.3: Time history of the integral §ft)2 due to an impulse of; (t).

e ADD : Acceleration-driven damper strategy with sampling ped¢d= 10 3sec
e PS : Passive suspension with fixed damping coefficient equahip

e PS : Passive suspension with fixed damping coefficient equahiQ

The desigrOF; andOF,; depend on the tuning parametetsr, andrl, that have been optimized
after a limited number of trials. The resulting tuning paramete@kpare

—1000 1000
= 01, o= 057 n= |: 1000 —1000 :|
and inOF, are
—100 10

Finally, the parametdn for SF has been selected asOf;. As apparent from Table 1, the algorithm

OF; outperforms all other strategies based on incomplete measurements. Remarkably, the difference
between the outcomes 6fF; and SF is relatively small. By the way, the state-feedback performance

is quite close to that obtained by applying the theoretical optimal switching strategy corresponding to
ki — oo, see [42].
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Figure 5.4: Chassis acceleration during a short interval under a random road acceleration.

Figure 5.3 shows the integral of the square of chassis acceleration against time. It can be seen that
OF; is capable of lowering the acceleration in the transient better than the other methods.

In the second set of simulations the road pro&lé&) has been generated as the double integral
of a sample realization of a white noise process with poyfes 0.1. The performance of the seven
algorithms above, with the same values of the tuning parameters, has been measured as the power
attenuation on the chassis acceleration, namely the ratio

o, — Jo £t
B ATE

This value, forT = 20 sec, is reported in the second row of Table 1. The relative ranking of the
proposed algorithms is in good agreement with the indices shown before, the only difference being the
slight improvement 0OF, with respect tdOF;.
Figure 5.4 shows the behavior of the acceleration for the three me@ifegdSH and ADD. The plot has
been restricted to an interval of 2 seconds, in order to better represent the effects of the commutations
in the three methods. TheF, strategy outperforms the other two algorithms at the price of faster
switching commutation and shorter dwell intervals.

Finally the power attenuatio®r as a function of is plotted in Figure 5.5 to show the effectiveness
of the proposed output feedback strategy.
Obviously, the choice of the design parameters (in partidi)as still an open issue. As a reasonable
guideline, one could exploit the performance bounds discussed in Section 4.3.2 and 5.3. However, it
must be stressed that the optimization of the upper bounds with resgéaldes not ensure that the
minimum of the real performance is attained.



5.4. PRACTICAL APPLICATION
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Figure 5.5: Power attenuation under a random road acceleration.
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