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Chapter 1

Introduction

These notes aim at reviewing some results on stability analysis and stabilizing control synthesis for
continuous time switched linear systems. The notes are articulated into5 chapters. In the first four
chapters we consider autonomous switched systems described by

ẋ(t) = Aσ(t)x(t) , x(0) = x0 (1.1)

defined for allt ≥ 0 wherex(t) ∈ Rn is the state,σ(·) : R→ {1,2, · · · ,N} is the switching rule,x0 is
the initial condition and

Aσ(t) ∈ {A1, · · · ,AN} (1.2)

It is clear that this model naturally imposes a discontinuity onAσ(t) since this matrix must jump in-
stantaneously fromAi to A j for somei 6= j = 1, · · · ,N once switching occurs. In other words,Aσ(t) is
constrained to jump among theN vertices of the matrix polytope{A1, · · · ,AN}.
In Chapter2 we first consider the problem stability of (1.1), (1.2) under an arbitrary switching signal
σ(·). Then, we move to the problem of determining time-dependent strategiesσ(t) that ensure the
stability of the resulting time-varying linear system. This problem calls for the concept ofdwell time
andaverage dwell time. In Chapter3, we pass to the problem of determining stabilizing switching rules
σ(t) = ξs(x(t)) that depend on the measure of the system’s state. Then, in Chapter4 the performance
index

J =
∫ ∞

0
x(t)Qσ(t)x(t)dt (1.3)

is introduced and we revise some possible solutions to the optimal control problem for switched sys-
tems, i.e. the determination of a state-feedback switching ruleσ(t) = ξs(x(t)) that minimizes the
performanceJ in (1.3). In this same chapter a thorough analysis of the optimal switching rule for
second-order oscillating systems is also developed. In Chapter5 some recent results on the stabiliza-
tion of switched systems with incomplete measurements are collected. In this framework, we assume
that the system’s state is not available for measurements and the designer only has to rely on the output
equation

y(t) = Cσ(t)x(t) (1.4)

The stabilization problem consists in the determination of a switching ruleσ(t) = ξo(yτ≤t(τ)), de-
pending on the past values of the output variable (1.4), capable to stabilize the closed-loop system.

Stability of continuous time switched linear systems have been addressed by several authors, [4], [6],
[11], [12], [27], [15], [16], [17], [20] and [22], among others. While the survey papers [6] and [16] give
a complete and detailed description on the problems arising in this area, the recent paper [11], dealing
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4 CHAPTER 1. INTRODUCTION

with extensions of LaSalle’s Invariance Principle provides an interesting discussion on a collection of
results on uniform stability of switched systems.

Generally speaking, whenσ(·) is state independent, that is, when it is aa priori piecewise constant
signal, the reported stability conditions are obtained using a family of symmetric and positive definite
matrices{P1, · · · ,PN} each one associated to the correspondent matrix of the set{A1, · · · ,AN} such
that a Lyapunov functionv(x(t)) is non increasing with respect toσ(t) at every switching time. In
Chapter2, for minimum dwell time design preserving global stability it is assumed that each matrix
of the set{A1, · · · ,AN} is asymptotically stable but the non increasing condition on the Lyapunov
function is relaxed. It is replaced by the weaker condition that at every switching timetk the sequence
v(x(tk)), for k = 0, · · · ,∞, converges uniformly to zero. In some instances, our design procedure for
the determination of the minimum dwell time, based on a quadratic guaranteed cost, is related to the
results of [21] assuming further that the switching rule is nota priori given but can be taken arbitrarily,
among the feasible ones, see [9]. For comparison purpose a simple second order example is solved
and it is shown that the estimation of the minimum dwell time provided in this paper is sensibly better
than the one obtained from the classical result of [17]. The results obtained in this context has some
resemblance with those achieved in [24], where the characterization of the exponential growth rate of
switched system is provided. However, much work is needed to establish the possible links between
these two papers. The average dwell time results are those provided in [10], for Hurwitz matrices
and [41] when there are both stable and unstable matrices. Notice that the dwell time calculation
provided in the first part of Chapter2 also suggests a way to solve the state-feedback stabilization
problem for a input driven switched system characterized by the pairs(Ai ,Bi). Indeed, under mild
assumptions it is possible to design matricesKi such that to stabilize the closed-loop systemsAi +BiKi .
Hence one can compute the upper bound of the dwell time to establish the maximum time duration
of the control law. The general problem of minimization of the dwell time as a function of the design
local control lawsKi is still open.

In Chapter3, for switched systems withσ(·) being state dependent, the stability condition is expressed
in terms of a set of inequalities that we callLyapunov-Metzler inequalitiesbecause the variables in-
volved are a set of symmetric and positive definite matrices{P1, · · · ,PN} and a Metzler matrixΠ.
The point to be noticed is that our asymptotical stability condition does not require any stability prop-
erty associated to each individual matrix of the set{A1, · · · ,AN} and it contains as special cases the
quadratic stability condition and the well knownaveragestability condition provided in [15], [10] and
the references therein. An important point of our main result is that it includes the stability of possible
sliding modes, a fact that in the particular caseN = 2 was observed in [15]. It is also important to
stress that in [20] we can find some stability results related to the same problem (without the analysis
of sliding modes) but restricted to the special caseN = 2 which does not require the formalism based
on the Lyapunov-Metzler inequalities introduced here. In our general case, the price to be paid, how-
ever, is the non-convex nature of the the Lyapunov-Metzler inequalities being thus difficult to solve
numerically. From this previous result, a more conservative but easier to solve asymptotical stability
condition is proposed. It is important to express that these stability conditions do not suffer of a com-
mon drawback appearing, for example, in [13] where sliding modes are excluded and whose eventual
occurrence has to be a posteriori verified. Adopting the more stringent condition thatAσ belongs to
the convex combination of matricesA1, · · · ,AN the control design falls precisely into the well known
class of LPV control systems already analyzed and solved for state and output feedback, [25], [30].

In Chapter4 the theory of optimal control of switched systems is recalled pursuing the approach
that hinges on the Hamilton-Jacobi equation. In particular the finite horizon problem is dealt with
and an algorithm is provided based on gridding of the unitary sphere. Moreover, the particular class
of second order oscillating systems is considered and the infinite horizon optimal control problem is
addressed. To this regard, an algorithm providing the optimal conic switching surfaces is discussed.

The stability conditions expressed in terms of the Lyapunov-Metzler inequalities is developed further
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in Chapter4 to cope with the determination of lower and upper bounds on the optimal switching con-
trol and output feedback switching control design. It is important to stress that a simple generalization
of the Lyapunov-Metzler inequalities provides a solution to the Hamilton-Jacobi-Bellman inequality,
an useful property for optimal cost lower bound calculation, see [28]. These problems are addressed
in a general framework where the quadratic cost is defined from a set of external impulse-type per-
turbations. Throughout some simple numerical examples of third order are included for illustration
purposes. A more realist practical application of a switched linear system of fourth order is included.
The problem consists on the design of a switching control strategy for semi-active suspensions in road
vehicles, and is motivated by the paper [29], where an optimal control algorithm has been devised.
Finally, a complete analysis of second order oscillating switched system is carried out and a algorithm
to find the optimal control law is provided, see [42].

Very little attention has been devoted to the design of stabilizing output feedback control laws. The
reader is requested to see [6], [16] and [15] for a rather complete review on stability of continuous time
switched linear systems, where special attention is given to the case of switching between two linear
systems. The same reference also provides a discussion on hybrid feedback control based on output
measurements which can not be directly generalized to cope with the problem addressed in Chapter5.

The notation used throughout is standard. Capital letters denote matrices and small letters denote
vectors. For scalars, small Greek letters are used. For real matrices or vectors (′) indicates transpose.
For square matricesTr(X) denotes the trace function ofX being equal to the sum of its eigenvalues
and, for the sake of easing the notation of partitioned symmetric matrices, the symbol(•) denotes
generically each of its symmetric blocks. The setM denotes the set of all Metzler matrices, composed
by square matricesΠ∈RN×N of fixed dimensions with nonnegative off diagonal elements. The subset
denoted asMc is composed by Metzler matrices satisfying the normalization constraints∑N

i=1 πi j = 0
for all j = 1, · · · ,N. Hence, each matrix inMc has a null (unitary) Perron-Frobenius eigenvalue
associated to a nonnegative eigenvectorν ≥ 0∈RN. The unitary simplex defined for all vectorsλ ∈RN

such thatλi ≥ 0 , for all i = 1, · · · ,N and∑N
i=1 λi = 1 is denoted byΛ. Given matricesU1, · · · ,UN of

compatible dimensions andλ ∈ Λ, the matrixUλ := ∑N
i=1 λiUi denotes a matrix obtained by a convex

combination. Then×n identity matrix is denoted asIn. Finally, δ (t) denotes the unitary impulse and
the square norm of a trajectorys(t) defined for allt ≥ 0, denoted‖s‖2

2 equals‖s‖2
2 :=

∫ ∞
0 s(t)′s(t)dt,

see [5].



6 CHAPTER 1. INTRODUCTION



Chapter 2

Time Switching Control

This chapter considers switched linear system defined by the model (1.1) and (1.2). First, it discusses
the ideas underlying the verification of stability under arbitrary switching laws. Then, the attention
will be focused on the design of time switching control laws.

2.1 Stability under arbitrary switching

Let us consider the switched system

ẋ(t) = Aσ(t)x(t) , x(0) = x0 (2.1)

We want to address the following problem: under which conditions the system is asymptotically stable
for anyadmissible1 σ(·)?
Notice first that the signalσ(t) = i, ∀t, is admissible. This means that a necessary condition for
stability under arbitrary switching2 is that all matricesAi , i = 1,2, · · · ,N are Hurwitz. Unfortunately,
this condition is not sufficient. A simple counterexample is provided by the two triangular matrices

A1 =
[ −1 −5

0 −1

]
, A2 =

[ −1 0
3 −1

]

Indeed, consider the2T periodic signal characterized by

σ(t) =
{

2 t ∈ [0,T)
1 t ∈ [T,2T)

and the transition matrixΦ(t,τ) of the periodic system

ẋ(t) = Aσ(t)x(t)

It turns out that the monodromy matrix (transition matrix over one period) is

Φ(2T,0) = eA2TeA1T

The periodic system is asymptotically stable if and only if the monodromy matrix has all eigenvalues
(charactreistic multipliers) inside the open unit disk. In Figure 2.1 is plotted the maximum absolute
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Figure 2.1: The maximum absolute characteristic multiplier as a function ofT.

value of the two characteristic multipliers as a function ofT. It turns out that forT = 1 (for example)
the system is unstable, so that the above switching strategy is destabilizing.

On the other hand, a simple sufficient condition for GUAS can be formulated by means of the Lyapunov
inequalities

A′iP+PAi < 0, i = 1,2, · · · ,M (2.2)

It is indeed clear that the function
V(x) = x′Px(t) (2.3)

is a Lyapunov function for any admissible signalσ(t), since

V̇(x(t)) = x′(t)(A′σ(t)P+PAσ(t))x(t) < 0

along the trajectories of the system. The function (2.3) is a Common Lyapunov Function (CLF) for
the switched system, in that

V(x) > 0, V̇(x) =
∂V(x)

∂x
ẋ < 0, x 6= 0

for any switching signalσ(t). Moreover, it is quadratic in the state, beingV(x) = x′Px(t), and hence-
forth is referred to as Common Quadratic Lyapunov Function (CQLF).

Unfortunately, there are systems which are asymptotically stable under arbitrary switching and do not
admit any CQLF. However, it can be shown that a linear switched system is GUAS if and only if it
is possible to find a CLF. A techinque to find the CLF refers to the so-called homogeneous Lyapunov
functions, see [58], [59]. For instance consider

A1 =
[ −1 −1

1 −1

]
, A2 =

[ −1 −10
0.1 −1

]

To see that this system does not admit ant CQLF, consider, without any loss of generality, the matrix

P =
[

1 r
r q

]

1Here admissible means that in finite time only a finite number of switching can occur. For every piecewise constant
switching signal the system is linear and time-varying. thus, asymptotic stability and exponential stability do coincide.

2We say that the system is GUAS (Global Uniform Asymptotically Stable) is for each admissible switching signal the
associated time-varying linear system is asymptotically stable.
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Figure 2.2: system for various switching signals, randomly generated.
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Figure 2.3: The CLF for various switching signals, randomly generated.

which is positive definite if and only ifq > r2. Then computeΓ1 = A′1P+PA1 andΓ2 = A′2P+PA2. It
turns out thatΓ1 andΓ2 are negative definite if and only if

q2 > 1− (r−3)2

8
, q2 > 100− (r−300)2

800

As can be easily seen, no values ofq satisfy the inequalities, and hence the system does not admit any
CQLF. However, there exist the CLF of degree8

V(x) = ξ ′Pξ

where

ξ =




x4
1

x3
1x2

x2
1x2

2
x1x3

2
x4

2




, P =




1 3.649 −14.323 −5.49 6.807
? 69.34 9.023 −282.004 182.001
? ? 1181.813 −375.17 −693.818
? ? ? 5911.771 −4520.587
? ? ? ? 11393.280




In Figure 2.2 it is plotted the phase portrait of the system’s state for some randomly generated switching
signals. On the other hand, Figure 2.3 shows the CLFV(x) for various switching signals, starting from
x(0) = [11].
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To end this section, notice that it is always possible to associate with a GUAS system a CLF that is
homogeneous of degree2 and in particular one CLF that takes the form

V(x) = max
i=1,2,···k

{(l ′i x)2}

wherel ′i , i = 1,2, · · · ,k are suitable row vectors andk is a large enough positive integer. Analogously,
the following result holds

Theorem 1 The system is exponentially stable under arbitrary switching if and only if there exist
matricesW ∈ RN×n, Qi ∈ RN×N, N≥ n, such that

WAi = QiWi , µ∞(Qi) < 0, ∀i (2.4)

¤

whereµ∞(Qi) < 0 = maxj [Qi ] j j +∑k6= j |[Qi ] jk|, see the recent research monograph [2].

2.2 RMS under arbitrary switching

The techniques used to determine if a switched sysetm is stable under arbitrary switching can be
extended to cope with performance requirements. Herein we briefly consider theroot mean square
property of a switched system. To be precise, let us consider the switched system

ẋ(t) = Aσ(t)x(t)+Bσ(t)u(t) (2.5a)

y(t) = Cσ(t)x(t)+Dσ(t)u(t) (2.5b)

whereAi , i = 1,2, · · · ,N, are Hurwitz matrices. It is clear that, under the assumption that the system
is asymptotically stable for any switching signal, it makes sense to consider the problem of finding the
minimumγ > 0 for which

sup
w∈L2(0,∞)

‖y‖2

‖w‖2
< γ (2.6)

Notice that such
γ ≥max

i
{γi}

whereγi is theH∞ norm associated with the stationary system(Ai ,Bi ,Ci ,Di).

Theorem 2 Assume that there exists a positive definite matrixP such that



A′iP+PAi PBi C′i
B′iP −γ2I D′

i
Ci Di −I


 < 0 , ∀ i ∈ N (2.7)

then, for each switching signalσ , the equilibrium solutionx = 0 of the switched linear system (2.5) is
globally asymptotically stable and

sup
w∈L2,w6=0

∫ ∞

0
(y′y− γ2w′w)dt < 0 (2.8)

Proof First of all notice that (2.7) is equivalent toγ2I −D′
iDi > 0 and

A′iP+PAi +(PBi +C′i Di)(γ2I −D′
iDi)−1(PBi +C′i Di)′+C′iCi < 0, ∀i (2.9)
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In particular
A′iP+PAi < 0

so that global asymptotic stability under arbitrary switching is ensured. Also, the state of the system
goes to zero for eachσ and each input square integrable disturbancew. This means that, taking
V(x) = x′Px, we haveV(x(∞)) = 0. Now, compute the derivative ofV(x) along the trajectories of
(2.5). Letting

w∗ = (γ2I −D′
iDi)−1(PiBi +C′i Di)′x

from (2.9) it turns out that

V̇(x) = x′(A′σ P+PAσ )x+2x′PBσ w

< −y′y+ γ−2w′w− (w−w∗)′(γ2I −D′
iDi)(w−w∗)

< −y′y+ γ−2w′w

Integrating from0 to ∞ and recalling thatV(x(0)) = V(x(∞)) = 0 it follows that
∫ ∞

0
(y′y− γ2w′w)dt < 0, ∀σ , ∀w 6= 0, w∈ L2

Consider now inequality (2.7). Takingαi , i = 1,2, · · · ,N in a simplex, i.e.αi ≥ 0 and∑i αi = 1, one
can multiply (2.7) byαi , sum up and use the Schur complement Lemma to obtain

A′αP+PAα +(PBα +C′αDα)(γ2I −D′
αDα)−1(PBα +C′αDα)′+C′αCα < 0

where

Aα =
N

∑
i=1

αiAi , Bα =
N

∑
i=1

αiBi

Cα =
N

∑
i=1

αiCi , Dα =
N

∑
i=1

αiAi

This means that the polytopic system defined byAα , Bα , Cα , Dα hasH∞ norm less thanγ for each
choice ofα in the symplex. In conclusion,H∞ performances of switched systems under arbitrary
switching laws are related to those of polytopic systems. This fact extends a well know result for
stability under arbitrary switching, for which quadratic stability is only a conservative sufficient con-
dition. For a thorough discussion on nonconservative solution via polyhedral Lyapunov function, the
interested reader is referred to the recent volume [2].

2.3 Dwell-time

In this section we assume that each matrix of the set{A1, · · · ,AN} is asymptotically stable. The prob-
lem under consideration can be stated as follows : Determine a minimum dwell timeT∗ > 0 such that
the equilibrium pointx= 0 of the system (1.1) is globally asymptotically stable with the time switching
control

σ(t) = i ∈ {1, · · · ,N} , t ∈ [tk, tk+1) (2.10)

wheretk andtk+1 are successive switching times satisfyingtk+1− tk ≥ T∗ for all k ∈ N and the index
i ∈ {1, · · · ,N} selected at each instant of timet ≥ 0 is arbitrary. Hence, asymptotical stability is
preserved wheneverσ(t) remains unchanged for a period of time greater or equal to the minimum
dwell time T∗. The next theorem provides the theoretical basis towards a possible solution of this
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problem by characterizing an upper bound forT∗. It uses the concept of multiple Lyapunov function
with the innovation that the classical non increasing assumption at switching times is no longer needed,
see [4].

Theorem 3 Assume that, for someT > 0, there exists a collection of positive definite matrices{P1, · · · ,PN}
of compatible dimensions such that

A′iPi +PiAi < 0 , ∀ i = 1, · · · ,N (2.11a)

eA′iTPje
AiT −Pi < 0 , ∀ i 6= j = 1, · · · ,N (2.11b)

The time switching control (2.10) withtk+1− tk ≥ T makes the equilibrium solutionx = 0 of (1.1)
globally asymptotically stable.

Proof Consider, in accordance to (2.10), thatσ(t) = i ∈ {1, · · · ,N} for all t ∈ [tk, tk+1) wheretk+1 =
tk +Tk with Tk ≥ T > 0 and that att = tk+1 the time switching control jumps toσ(t) = j ∈ {1, · · · ,N},
otherwise the result trivially follows. From (2.11a), it is seen that, for allt ∈ [tk, tk+1), the time deriva-
tive of the Lyapunov functionv(x(t)) = x(t)′Pσ(t)x(t), along an arbitrary trajectory of (1.1) satisfies

v̇(x(t)) = x(t)′(A′iPi +PiAi)x(t)
< 0 (2.12)

which enables us to conclude that there exist scalarsα > 0 andβ > 0 such that

‖x(t)‖2 ≤ βe−α(t−tk)v(x(tk)) , ∀t ∈ [tk, tk+1) (2.13)

On the other hand, using the inequalities (2.11b) we have

v(x(tk+1)) = x(tk+1)′Pjx(tk+1)

= x(tk)′eA′iTkPje
AiTkx(tk)

< x(tk)′eA′i(Tk−T)Pie
Ai(Tk−T)x(tk)

< x(tk)′Pix(tk)
< v(x(tk)) (2.14)

where the second inequality holds from the fact that for everyτ = Tk−T ≥ 0 it is true thateA′iτPieAiτ ≤
Pi . The consequence is that there existsµ ∈ (0,1) such that

v(x(tk))≤ µkv(x0) , ∀k∈ N (2.15)

which together with (2.13) implies that the equilibrium solutionx = 0 of (1.1) is globally asymptoti-
cally stable.

This result deserves some comments. First, it is simple to determine the scalarsα, β andµ such
that (2.13) and (2.15) hold. Indeed, assuming that{P1, · · ·PN} satisfy the conditions of Theorem 3
then, from (2.11a) there existsε > 0 such thatA′iPi + PiA′i ≤ εI for all i = 1, · · · ,N yielding α =
ε/maxi λmax(Pi) > 0 andβ = 1/mini λmin(Pi) > 0. Furthermore, from (2.11b) there exists0 < µ < 1
such thateA′iTPjeAiT ≤ µPi for all i 6= j = 1, · · · ,N leading tov(x(tk+1))≤ µv(x(tk)) and consequently
(2.15). Second, since all matrices of the set{A1, · · · ,AN} are supposed to be asymptotically stable, the
constraints (2.11a) are always feasible and the constraints (2.11b) are satisfied whenT > 0 is taken
large enough. Third, assuming that matricesA1, · · · ,AN are quadratically stable, which is the same to
say that they share a positive definite matrixP such that

A′iP+PAi < 0 , ∀i = 1, · · · ,N (2.16)
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then the inequality (2.11b) is satisfied forP1 = · · ·= PN = P for anyT > 0 meaning that the switching
policy (2.10) may jump fromi to j arbitrarily fast preserving asymptotical stability. Hence, Theorem
3 contains, as a particular case, the quadratic stability condition. Finally, withT > 0 fixed it is always
possible to define a time switching control strategy (2.10) such thatAσ(t) is periodic. As a consequence,
a necessary condition for the feasibility of constraints (2.11a) and (2.11b) is

θ(T) := max
q=1,··· ,n

∣∣∣∣∣λq

(
N

∏
p=1

eBpT

)∣∣∣∣∣ < 1 (2.17)

whereλq(·) denotes a generic eigenvalue of(·) and{B1, · · · ,BN} are matrices corresponding to any
permutation among those of the set{A1, · · · ,AN}. However, since (2.10) may produce non-periodic
policies as well, the necessary condition (2.17) for the existence of a feasible solution to inequalities
(2.11), generally does not meet sufficiency. In the sequel, this aspect will be illustrated by means of an
example.

In this setting, an upper bound for the minimum dwell timeT∗ can be computed by taking the
minimum value ofT satisfying the conditions of Theorem 3. Hence, it can be calculated with no big
difficulty from the optimal solution of the optimization problem3

min
T>0,P1>0,··· ,PN>0

{T : (2.11)} (2.18)

which, for eachT > 0 fixed, reduces to a convex programming problem with linear matrix inequalities
constraints that can be handled by any LMI solver available in the literature to date, see [3] for an
important study on systems and LMIs. A line search procedure is then used to deal with the scalar
variableT > 0.

Finally, it is possible to generalize the result of Theorem 3 in order to define a guaranteed cost to
go from an arbitrary initial point to the origin, associated to the stabilizing time switching rule (2.10)
with tk+1− tk ≥ T for any fixedT > 0. To this end we make the assumption thatT > 0 is known such
that tk+1− tk ≤ T for all k ∈ N. Clearly, these quantities are related throughT ≥ T ≥ T∗ where the
second inequality assures global stability.

Theorem 4 Let Q≥ 0∈ Rn×n andT ≥ T > 0 be given. Define the set of symmetric, non-negative
definite matrices

Ri :=
∫ T

0
eA′i tQeAi tdt , i = 1, · · · ,N (2.19)

Assume that there exists a collection of positive definite matrices{P1, · · · ,PN} of compatible dimen-
sions such that

A′iPi +PiAi +Q < 0 , ∀ i = 1, · · · ,N (2.20a)

eA′iTPje
AiT −Pi +Ri < 0 , ∀ i 6= j = 1, · · · ,N (2.20b)

The time switching control (2.10) withT ≥ tk+1− tk≥ T makes the equilibrium solutionx= 0 of (1.1)
globally asymptotically stable and

∫ ∞

0
x(t)′Qx(t)dt < x′0Pσ(0)x0 (2.21)

Proof Since forQ≥ 0 andT ≥ T > 0 given, each matrixRi defined in (2.19) is nonnegative definite
and inequalities (2.20) are satisfied then, inequalities (2.11) are also satisfied. As a consequence,

3This problem should be stated withinf instead ofmin. All feasible sets of problems expressed in terms of LMIs must be
considered closed from the interior within a precision defined by the user.
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asymptotical stability follows from Theorem 3. On the other hand, using (2.19) together with the
inequalities (2.20) we have thatPi > Ri and

A′i(Pi −Ri)+(Pi −Ri)Ai < −Q−A′iRi −RiAi

< −Q−
∫ T

0

d
dt

eA′i tQeAi tdt

< −eA′iT QeAiT

< 0 (2.22)

for all i = 1, · · · ,N. The important consequence of this calculation is that for eachi = 1, · · · ,N the
inequalityeA′iτ(Pi −Ri)eAiτ ≤ (Pi −Ri) holds for anyτ ≥ 0. Using this property, taking into account
the switching strategy (2.10) withtk+1− tk = Tk ≥ T and the inequalities (2.20b) one gets

v(x(tk+1)) = x(tk+1)′Pjx(tk+1)

< x(tk)′eA′i(Tk−T)(Pi −Ri)eAi(Tk−T)x(tk)
< x(tk)′(Pi −Ri)x(tk)
< v(x(tk))−x(tk)′Rσ(tk)x(tk) (2.23)

which summing up for allk∈ N and taking into account thatT ≥ tk+1− tk allows us to write

∫ ∞

0
x(t)′Qx(t)dt =

∞

∑
k=0

∫ tk+1

tk
x(tk)′eA′i(t−tk)QeAi(t−tk)x(tk)dt

≤
∞

∑
k=0

x(tk)′Rσ(tk)x(tk)

< v(x0) (2.24)

which proves the proposed theorem.

It is interesting to observe that the conditions of Theorem 4 are feasible if and only ifT ≥ T ≥ T∗
and from (2.21) it is seen that a more accurate guaranteed cost is obtained whenever the value ofT is
chosen as small as possible. In addition, the choiceT = +∞ enables us to conclude that the proposed
time switching rule (2.10) withtk+1− tk≥ T∗, makes the trajectoryy(t) = Q1/2x(t), t ≥ 0 quadratically
integrable. Theorem 4, admits the extreme situationT = T = +∞ for which no jump occurs and
inequalities (2.20) are verified for

Pi =
∫ ∞

0
eA′i t(Q+ εI)eAi tdt > Ri ≥ 0 , i = 1, · · · ,N (2.25)

with ε > 0 arbitrary. Whenε > 0 goes to zero,Pi goes toRi and (2.21) becomes a well known result.
On the other hand, forT > 0 arbitrarily small and anyT ≥ T, feasibility holds whenever the set of
matrices{A1, · · · ,AN} admits a common Lyapunov function.

Example 1 For illustration purpose of the theoretical results obtained so far, let us consider the fol-
lowing example withN = 2 and matrices

A1 =
[

0 1
−10 −1

]
, A2 =

[
0 1

−0.1 −0.5

]
(2.26)

which are not quadratically stable. First, from problem (2.18), we have calculated an upper bound for
the minimum dwell time as beingT∗ ≤ 2.76. To give an idea of its conservativeness we have calculated
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Figure 2.4: The functionθ(T).

from the plot of Figure 2.4 the valueTper = 2.71corresponding to the necessary condition for stability
(2.17), arising from linear periodic systems. Both being very close indicates, for this simple example, a
good precision on the determination ofT∗. On the other hand, for comparison purpose we have applied
the classical result of [17] for the determination of an alternative upper bound for the minimum dwell
timeT∗ given byT∗ ≤maxi=1,··· ,N{Ti} where

Ti = inf
α>0,β>0

{
α
β

: ‖eAi t‖< e(α−β t) ∀t ≥ 0

}
(2.27)

For matrices in (2.26) we have numerically determinedT1 = 2.33andT2 = 6.66yielding an estimation
for the minimum dwell time as beingT∗ ≤ 6.66. Hence, in this particular example, the result provided
by the solution of problem (2.18) is much more precise but at expense of a more expressive compu-
tational effort. Figure 2.5 has been constructed by simulation of system (1.1) with the time switching
rule (2.10),tk+1− tk = 3.0, initial conditionsx0 = [1 1]′, σ(0) = 2 andQ = I . The family of Lyapunov
functions has been calculated from the optimal solution of the following convex programming problem

min
P1>0,··· ,PN>0

max
i=1,··· ,N

{x′0Pix0 : (2.20)} (2.28)

which puts in evidence that a guaranteed cost can be determined for the worst case as far as the
initial condition σ(0) appearing in (2.21) is concerned. ForT = T = 3.0, we have obtained the
minimum guaranteed cost equal toδ ∗ = 100.61, valid for both initial conditions. As commented
before, the Lyapunov functionv(x(t)) = x(t)′Pσ(t)x(t) goes to zero ast goes to infinity however, it is
not uniformly decreasing with respect to time. In Figure 5.2, due to the stability conditions of Theorem
4, the discontinuity points, marked with ”o”, defines a globally convergent sequencev(x(tk)), for all
k ∈ N. Solving again problem (2.28) but forT = +∞ and T = 3.0 the minimum guaranteed cost
increases toδ ∗ = 147.94 as a consequence of allowing a more flexible switching rule (2.10) with
tk+1− tk ≥ 3.0.

The example above shows that there is a clear improvement on stability conditions, dwell time and
guaranteed cost calculations when compared to the results available in the literature to date, see [11],
[17]. Notice however, that the conditions in Theorem 3 are still conservative, in that they employ only
piececewise quadratic Lyapunov functions. It is possible to diminish the conservativeness by using
homogeneous polynomial Lyapunov equations via Kronecker calculus, see [61]. Interestingly, these
conditions are strict for second order systems. For instance, the exact minimum dwell time associated
with the example above isT? = 2.7078.
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Figure 2.5: The Lyapunov function.

2.4 Average dwell-time

In this section we consider system (1.1), (1.2) and assume first that it is constituted by Hurwitz matri-
ces. For each switching sequenceσ and eacht > τ ≥ 0 denote byNσ (τ, t) the number of switchings
in the interval(τ, t) and letS [τa,N0] the set of switching laws obeying

Nσ (τ, t)≤ N0 +
t− τ

τa

whereN0 ≥ 0 is the so-called chatter bound andτa is the average dwell time. This means that there
may exist some consecutive switchings separated by less thanτa, but the average time interval between
consecutive switchings is no less thanτa. We show, see [10], that there exist a sufficiently largeτ?

a such
that the switching system is stable for any switching rule inS [τa,N0], with τa ≥ τ?

a and any chatter
boundN0. Indeed, since all matricesAi , i = 1,2, · · · ,N are Hurwitz, we can write

‖eAi t‖ ≤ eai−λi t , ∀i

Hence, takingt ∈ [tk, tk+1) wheretk is thek− th switch, we can write

‖Φ(t,0)‖ ≤ eα(k+1)e−β t

whereα = maxi αi andβ = miniβi . Hence, for all switching signals inS [τa,N0] we have

‖Φ(t,0)‖ ≤ eα(N0+1)e( α
τD
−β )t

Letting

τ?
a =

α
β −λ

, λ ∈ (0,β )

the thesis follows.

Now, we assume that the system is composed by both Hurwitz and non Hurwitz matrices. Following
[41], and without loss of generality, we assume thatA1, A2, · · · , Ar are non Hurwitz andAr+1, Ar+2,
· · · , AN are Hurwitz. The it is possible to write

‖eAi t‖ ≤ eαi+βi t , i = 1,2, · · · , r
‖eAi t‖ ≤ eαi−βi t , i = r +1,2, · · · ,N

with αi ≥ 0 andβi > 0, ∀i. Now let

β+ = max
i=1,··· ,r

βi , β− = min
i=r+1,··· ,N

βi
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andT+(t) [T−(t)] the total activation time of the unstable [stable] subsystems in the interval[0, t).
Finally letS W τa the class of switching laws satisfying the following two conditions

inf
t≥0

T−(t)
T+(t)

≥ β+ +β ∗

β−−β ∗
, β ∗ ∈ (λ , β−), λ ∈ (0,β−) (2.29)

The average dwell time is not smaller thanτa (2.30)

It is possible to prove that there existsτ∗a sufficiently large such that the switched system is stable for
any switching rule inS W τa for anyτa ≥ τ∗a and any chatter boundN0. Indeed, for anyt ∈ [tk, tk+1) it
follows

‖Φ(t,0)‖ ≤ eα(k+1)eβ+T+(t)−β−T−(t)

whereα = maxi αi andβ+ = maxi=1,··· ,r , βi = mini=r+1,··· ,N βi . SinceT+(t) + T−(t) = t a simple
computation shows thatβ+T+(t)−β−T−(t)≤ β ∗t so that

‖Φ(t,0)‖ ≤ eα(N0+1)e
(α
τD
−β ∗)t

The result follows by taking

τ∗a =
α

β ∗−λ
Notice that if all matrices are Hurwitz, condition (2.29) is satisfied so that the last formula corresponds
to the average dwell time in this case.

2.5 RMS with dwell time constraint

Consider again system (2.5) and assume thatAi , i = 1,2, · · · ,N are Hurwitz matrices. The RMS
problem with dwell constraint consists in finding the minimumT∗ ≥ 0 for which (2.6) holds for any
switching signal with commutation instants satisfyingtk+1− tk ≥ T∗.To this end, denote byDT the set
of all switching signals satisfyingtk+1− tk ≥ T, ∀k.

Notice first that, beingγ ≥ γi (theH∞ norm of system(Ai ,Bi ,Ci ,Di)), there exist positive semidefinite
matricesPi satisfying the Riccati equations

A′iPi +PiAi +(PiBi +C′i Di)(γ2I −D′
iDi)−1(PiBi +C′i Di)′+C′iCi = 0 (2.31)

with Ai + Bi(γ2I −D′
iDi)−1(PiBi +C′i Di)′ Hurwitz. To this end, we need to introduce the following

matrices

Hi = Ai +BiLi (2.32)

Qi = (Ci +DiLi)′(Ci +DiLi)− γ2L′iLi (2.33)

Li = (γ2I −D′
iDi)−1(PiBi +C′i Di)′ (2.34)

Si =
∫ ∞

0
eHi tBi(I − γ−2D′

iDi)−1B′ie
H ′

i tdt (2.35)

Ui(τ) =
∫ τ

0
eHi tBi(I − γ−2D′

iDi)−1B′ie
H ′

i tdt (2.36)

Ri(τ) =
∫ τ

0
eH ′

i tQie
Hi tdt (2.37)

(2.38)

(2.31) can be factorized as
H ′

i Pi +PiHi +Qi = 0 (2.39)
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for all i ∈N. As indicated before, noticing that the optimal gainLi is determined from the unique stabi-
lizing solution to the algebraic Riccati equation (2.31), matrixHi is Hurwitz for eachi ∈ N. However,
since matrixQi for eachi ∈N is not positive definite, the stabilizing solution of the Riccati equation is
not a Lypunov matrix associated to the closed loop system, a well known fact inH∞ theory. The next
lemma is of key importance since it gives an upper bound to theH∞ cost. It regards the differential
Riccati equation

−Π̇ = A′σ Π+ΠAσ +(ΠBσ +C′σ Dσ )(γ2I −D′
σ Dσ )−1(ΠBσ +C′σ Dσ )′+C′σCσ = 0 (2.40)

Lemma 1 Assume thatσ(t) = i for t ∈ [tk, tk+1) andσ(tk+1) = j . Assume that a bunch ofN positive
definite matricesZi are given. Finally, assume that the solutionΠ(t) of (2.40) with final condition
Π(tk+1)= Z j exists in the intervalt ∈ [tk, tk+1). Then, for the switched linear system (2.5), the following
upper bound holds

sup
w

∫ tk+1

tk
(y′y− γ2w′w)dt ≤ x(tk)′Π(tk)x(tk)−x(tk+1)′Z jx(tk+1) (2.41)

where

Π(tk) = Pi +eH ′
i (tk+1−tk)

(
(Z j −Pi)−1− γ−2Ui((tk+1− tk))

)−1
eHi(tk+1−tk)

Proof The proof follows by computing the differential equation for(Π(t)−Pi)−1, the derivative of
V(x) = x′Π(t)x(t) and using classical square completing arguments.

From Lemma 1 it is clear that, ifΠ(tk+1− tk) < Zi , for anytk+1− tk ≥ T, then

sup
w∈L2

∫ ∞

0
(y′y− γ2w′w)dt ≤

∞

∑
k=0

x(tk)′Π(tk)x(tk)−x(tk+1)′Z jx(tk+1)≤ x(0)′Zσ(0)x(0) (2.42)

so that the guaranteed bound is obtained asx(0)→ 0. The next theorem states a sufficient condition in
terms of LMIs.

Theorem 5 Assume that, for givenT > 0, and for all i, j , there exists matricesZ1,Z2, · · · ,ZM such
that 


A′iZi +ZiAi ZiBi C′i

B′iZi −γ2I D′
i

Ci Di −I


 < 0 (2.43)

and [
eH ′

i TZ jeHiT −Zi +Wi eH ′
i T(Z j −Pi)

∗ Z j −Pi − γ2S−1
i

]
< 0 (2.44)

The following hold:

a) The equilibrium solutionx = 0 of the switched linear system (2.5) is globally asymptotically
stable.

b) Any trajectory of the switched linear system (2.5) with zero initial condition satisfies

sup
w

∫ ∞

0
(y′y− γ2w′w)dt < 0, ∀ σ ∈DT (2.45)



2.5. RMS WITH DWELL TIME CONSTRAINT 19

Proof We have to ensure thatΠ(tk+1− tk) < Zi , for any tk+1− tk ≥ T, whenΠ(tk+1) = Z j . Letting
τ = tk+1− tk, this is tantamount to saying thatΠ(0) < Zi whenΠ(τ) = Z j , i.e.

Zi > Pi +eH ′
i τ (

(Z j −Pi)−1− γ−2Ui(τ)
)−1

eHiτ , ∀τ ≥ T

It is left to the reader to prove that this inequality is ensured by (2.44) when the matricesZi satisfy
(2.43).
Notice that forγ → ∞, the inequalities become

A′iZi +ZiAi +C′iCi < 0

eA′iTZ je
AiT −Zi +Ri(T) < 0, Pi →

∫ ∞

0
eA′i tC′iCie

Ai tdt

so that conditions the conditions of Theorem 4 for theH2 cost are recovered. Moreover, if feasibility
occurs for asT → 0, thenZi = Z j = Z so that




A′iZi +ZiAi ZiBi C′i
B′iZi −γ2I D′

i
Ci Di −I


 < 0

which ensures that the attenuationγ is guaranteed forσ ∈D0, see (2.7).

For illustration purpose of the theoretical results obtained so far, let us consider the following example
with N = 2 already analyzed in Section 2.3 for dwell time calculations. The matrices of the switching
system (2.5) are given by

[
A1 B1

C1 D1

]
=




0 1 0
−10 −1 1

0.8727 0 −0.8727


 (2.46)

[
A2 B2

C2 D2

]
=




0 1 0
−0.1 −0.5 1

0 0.3333 0.3333


 (2.47)

and it is important to mention that they are not open loop quadratically stable, in which case the value
of γ for which (2.7) holds can not be calculated. The output matrices have been determined in such a
way that each transfer function has an unitaryH∞ norm, yieldingγc = maxi{γi}= 1.

Moreover, withT > 0 fixed it is always possible to define a time-switching control strategyσ ∈DT

such thatHσ(t) is periodic. As a consequence, a necessary condition for the feasibility of constraints
(2.43) and (2.44) is

θ(T) = max
q=1,··· ,n

∣∣∣∣∣λq

(
N

∏
p=1

eEpT

)∣∣∣∣∣ < 1 (2.48)

whereλq(·) denotes a generic eigenvalue of(·) and{E1, · · · ,EN} are matrices corresponding to any
permutation among those of the set{H1, · · · ,HN}. However, since the conditions of Theorem 5 take
into account non-periodic policies as well, the necessary condition (2.48) for the existence of a feasible
solution to inequalities (2.43)-(2.44), generally does not meet sufficiency. Hence a relevant function to
be determined, based on this necessary condition is

Tp(γ) = max
T>0

{T : θ(T) = 1} (2.49)

Figure 2.6 shows in solid line the functionT(γ), in dashdot line the functionTp(γ) againstγ ∈ (2.3, 7]
and in dashed line the value ofT(∞) which is in accordance to the fact that, for this particular example,
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Figure 2.6: The functionsT(γ) andTp(γ).

the minimum dwell time preserving asymptotical stability isT∗2.7078. From this figure it is also
confirmed thatTp(γ)≤ T(γ) for all γ > γc and that both are decreasing functions. The consequence is
that the minimum dwell time is associatedγ = +∞. This is an expected behavior of the functionT(γ)
since for smaller values ofγ, bounded bellow byγc, the switched linear system must support richer
switching rules without loosing stability. This is compensated by the increasing of the corresponding
dwell timeT(γ). Figure 2.6 also puts in evidence the good concordance between the functionsT(γ)
obtained from a sufficient condition assuring inequality (2.45) andTp(γ) obtained from a necessary
condition assuring the same inequality. Although mentioned before, this aspect could be improved
but, in our opinion, the results reported in this simple example are precise enough to classify the
proposed method as a valid procedure forH∞ and dwell time specification.



Chapter 3

State Switching Control

In this chapter we consider once again the system (1.1) where the switching rule satisfies (1.2). The
main difference from the previous chapter is that, presently, it is assumed that the switches that occur
are based on the value of the state vector. Two main problems can be defined: in the first, tackled
in Section 3.1 it is assume that the state-dependent switching law is given and one has to establish
the possible stability of the system only. In the second, tackled in Section 3.2, the state vectorx(t) is
available for feedback for allt ≥ 0, and the goal is to determine the functionu(·) : Rn → {1, · · · ,N},
such that

σ(t) = u(x(t)) (3.1)

makes the equilibrium pointx = 0 of (1.1) asymptotically stable.

3.1 Stability of a given switched system

In this section we briefly consider a given switched system and we aim at analyzing its stability prop-
erties. For instance consider the pair of matrices

A1 =
[

γ −1
2 γ

]
, A2 =

[
γ −2
1 γ

]
,

whereγ is a negative number close to zero and consider the switched system

ẋ =
{

A1x i f x1x2 ≤ 0
A2x i f x1x2 > 0

In Figure 3.1 it is shown the phase portrait of this switched system withγ = −0.1. It is seen that the
system is asymptotically stable. Indeed we can find a continuous and differentiable function

V(x) = x′x

which is positive definite and whose derivative along the trajectories of the switched system is negative,
since

V̇(x) =
{

x′(A1 +A′1)x i f x1x2 ≤ 0
x′(A2 +A′2)x i f x1x2 > 0

=
{

2γx2
1 +2γx2

2 +2x1x2 i f x1x2 ≤ 0
2γx2

1 +2γx2
2−2x1x2 i f x1x2 > 0

If the stability analysis with a single Lyapunov function is impossible, then it is possible to consider

21
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Figure 3.1: Phase portrait withγ =−0.1.

multiple Lyapunov functions. For instance consider again the two matricesA1 andA2 as before and
the switched system

ẋ =
{

A1x i f x1 ≥ 0
A2x i f x1 < 0

and the function

V(x) =
{

x′P1x i f x1 ≥ 0
x′P2x i f x1 < 0

where

P1 =
[

2 0
0 1

]
, P2 =

[
0.5 0
0 1

]

Notice that functionV(x) is continuous in the switching surfacex1 = 0, and

V̇(x) =
{

x′(P1A1 +A′1P1)x i f x1x2 ≤ 0
x′(P2A2 +A′2P2)x i f x1x2 > 0

=
{

4γx2
1 +2γx2

2 i f x1 ≥ 0
γx2

1 +2γx2
2 i f x1 < 0

Hence the system is asymptotically stable.

The idea underlying the construction of the above Lyapunov function is to determine two functions,
each for each region, with decreasing derivative in the region where the corresponding dynamics is
active. For quadratic functions, it is useful in this regard, to resort to a well known result of convex
programming, calledS-procedure.
Let us assume to have two quadratic functions

x′Qix, i = 1,2

We want to check the following conditions

x′Q0x > 0 ∀x such that x′Q1x≥ 0 (3.2)

It turns out that (S-procedure):

(i) If condition (3.2) is satisfied than there exists a nonnegative scalarα such that

Q0−αQ1 > 0 (3.3)

(ii) If condition (3.3) and there existx0 6= 0 such thatx′0Q1x0 > 0, then condition (3.2) is satisfied.
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The conditionx0 6= 0 such thatx′0Q1x0 > 0 is calledconstrain qualification. The proof that(i)→ (ii)
is very easy and can be extended easily to a finite number of functions,x′Qix, i = 0,2, · · · ,M. To
be precise, if there exists nonnegative scalarsαi , i = 1,2, · · · ,M such thatQ0−∑M

i=1 αiQi ≥ 0 then
x′Q0x≥ 0 wheneverx′Qix≥ 0, i = 12,2, · · · ,M. The converse result(ii)→ (i) is more difficult to be
proven and left to the reader.

Thanks to theS-procedure, given a switched system constituted by matricesAi , i = 1,2,1· · · ,M and
activation regions of the typex′Six≥ 0, the problem is to find positive definite matricesPi (yielding
functionsVi(x) = x′Pix) such that

x′(A′iPi +PiAi)x < 0, ∀x such that x′Six≥ 0, i = 1,2,1· · ·M
To this aim it is sufficient to find positive definite matricesPi and nonnegative scalars such that

A′iPi +PiAi +αiSi < 0, i = 1,2, · · ·M
Of course we are interested in functionsVi(x) which are continuous in the switching surfaces, and
hence an additional constraint has to be added. To be precise, if the boundary betweenx′Six andx′Sjx
is described by{x : f ′i j x = 0}, where fi j is an-dimensional vector, thenPi −Pj must satisfy

Pi −Pj = fi j t
′
i j + ti j f ′i j , ∀(i, j) = 1,2, · · · ,M

for somen-dimensional vectorti j .
However, notice that the fact that the derivative is negative is not sufficient to have asymptotic stability
if sliding modes occur. Indeed, consider the matrices

A1 =
[

1 0
0 −1

]
, A2 =

[
1 −1
1 1

]

and the surfaces

S1 =
[ −0.0666 0.1227

0.1227 0.9487

]
, S2 =−S1

It is possible to findP1 andP2 satisfying

A′iPi +PiAi +αiSi < 0

with

P1 =
[

0.0645 −0.3615
−0.3615 3.2651

]
, P2 =

[
0.1311 −0.4840
−0.4840 2.3165

]

andα1 = 3, α2 = 9. It is clear that the function

V(x) = max
i=1,2

x′Pix

is such thatV̇(x) < 0 whenever the derivative exists, i.e.x such thatx′(P1−P2)x 6= 0. However, the
trajectories of the switched system, as shown in Figure 3.2, tend to the unstable sliding surface obtained
by lettingx′(P1−P2)x = 0, i.e. x2 = 0.1656x1. Along this surface, the chattering system behaves as
the linear combination

ẋ = (A1α +A2(1−α))x =
[

1 −0.4574
0.4574 −0.08523

]
x

obtained withα = 0.7562. To understand the reason of instability of the Filippov solutions, take a
vectory belonging to the switching surface and check that

y′(A′1P2 +P2A1)y > 0, y′(A′2P1 +P1A2)y > 0
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Figure 3.2: Phase portrait with unstable sliding mode

−4 −3 −2 −1 0 1 2 3 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 3.3: Phase portrait with stable sliding mode

This means that, for eachi = 1,2 it results

D+v(y) = lim
h→0+

sup
V(y+hAiy)−V(y)

h
= max

l=1,2
y′(A′iPl +Pl Ai)y > 0

Consider now the same switched system and the switching surfaces:

s1(x) = 0.3827x1 +0.9239x2 = 0, s2(x) = 0.9808x1−0.1951x2 = 0

This means that

σ(x(t)) =
{

1 s1(x)s2(x) < 0
2 s1(x)s2(x) > 0

The phase portrait of the system is depicted in Figure 3.3. As a result, the switched system is asymp-
totically stable. However, finding a Lyapunov function is rather complex.

The switched system with the given pairA1, A2 was introduced in [60], where it is shown that it
does not admit a convex Lyapunov function. However, choosing the switching above surfaces we can
conclude that it is indeed stabilizable. The next section is devoted to the state-feedback stabilization
problem.
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3.2 Stabilization

First we discuss a classical stability condition provided in [15] and more recently in [23] as a particular
case of switched nonlinear systems. Let us first define the simplex

Λ :=

{
λ ∈ RN :

N

∑
i=1

λi = 1 , λi ≥ 0

}
(3.4)

and assume that there existsλ∞ ∈ Λ such thatAλ∞ is asymptotically stable. Hence it is possible the
determination ofP > 0 satisfying the Lyapunov inequality

A′λ∞
P+PAλ∞ < 0

It turns out that the switching rule with

σ(t) = u(x(t)) = arg min
i=1,··· ,N

x(t)′
(
A′iP+PAi

)
x(t) (3.5)

makes the equilibrium pointx= 0 of the switched system (1.1) globally asymptotically stable. Indeed,
considering the Lyapunov functionv(x(t)) = x(t)′Px(t) we have

v̇(x(t)) = x(t)′
(

A′σ(t)P+PAσ(t)

)
x(t)

= min
i=1,··· ,N

x(t)′
(
A′iP+PAi

)
x(t)

= min
λ∈Λ

x(t)′
(
A′λ P+PAλ

)
x(t)

≤ x(t)′
(
A′λ∞

P+PAλ∞

)
x(t)

< 0 (3.6)

In conclusion, if a set of matrices admits a Hurwitz convex combination, then there exists a stabiliz-
ing state-feedback switching rule such that the closed-loop system is quadratically stable. Also the
converse result is true forN = 2. Precisely, if there exists a state-feedback switching rule such that
the closed-loop system is quadratically stable, thenA1 andA2 admit a convex Hurwitz combination.
Indeed, letv(x) = x′Px be the quadratic Lyapunov function. This means that

x′(A′1P+PA1)x < 0

for all x such thatx′(A′2P+PA2)x≥ 0 and viceversa. In view of the S-procedure we have

A′1P+PA1 +β (A′2P+PA2) < 0

and henceAλ = αA1 +(1−α)A2 is Hurwitz with α = (β +1)−1.

To end this point, it is important to keep in mind that, even if it is known that there existsλ ∈Λ such that
Aλ is asymptotically stable, the numerical determination ofλ ∈ Λ andP > 0 such thatA′λ P+PAλ < 0
is not a simple task due to the nonlinear nature of this equation.

Now, let associate with the simplexΛ a set of positive definite matrices{P1, · · · ,PN}. This fact enables
us to introduce the following piecewise quadratic Lyapunov function

v(x) := min
i=1,··· ,N

x′Pix = min
λ∈Λ

(
N

∑
i=1

λix
′Pix

)
(3.7)
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As it will be clear in the sequel, this Lyapunov function is crucial to our purposes, see [1] and the
references therein. However, it presents some difficulties to be handled including the fact that it is not
differentiable everywhere. To analyze this aspect the setI(x) = {i : v(x) = x′Pix} plays a central role
sincev(x) fails to be differentiable onx∈Rn such thatI(x) is composed by more than one element or,
in other words, when the result of the minimization indicated in (3.7) is not unique, [19]. A main role
is played by the the class of Metzler matrices denoted byM and constituted by all matricesΠ∈RN×N

with elementsπi j , such that

πi j ≥ 0 ∀i 6= j ,
N

∑
i=1

πi j = 0 ∀ j (3.8)

It is clear that anyΠ∈M presents an eigenvalue at the origin of the complex plane sincec′Π = 0where
c′ = [1 · · · 1]. In addition, it is well known from the Frobenius-Perron’s theorem that the eigenvector
associated to the null eigenvalue ofΠ is non-negative yielding the conclusion that there always exists
λ∞ ∈ Λ such thatΠλ∞ = 0. The next theorem summarizes the main result of this section.

Theorem 6 Assume that there exist a set{P1, · · · ,PN} of positive definite matrices andΠ ∈M satis-
fying the Lyapunov-Metzler inequalities

A′iPi +PiAi +
N

∑
j=1

π ji Pj < 0 , i = 1, · · · ,N (3.9)

The state switching control (3.1) with

u(x(t)) = arg min
i=1,··· ,N

x(t)′Pix(t) (3.10)

makes the equilibrium solutionx = 0 of (1.1) globally asymptotically stable.

Proof It follows from the Lyapunov function (3.7) which, as we have said before, is not differentiable
for all t ≥ 0. For this reason we need to deal with the Dini derivative (see [8])

D+v(x(t)) = lim
h→0+

sup
v(x(t +h))−v(x(t))

h
(3.11)

Assume, in accordance to (3.10), that at an arbitraryt ≥ 0, the state switching control is given by
σ(t) = u(x(t)) = i for somei ∈ I(x(t)). Hence, from (5.19) and the system dynamic equation (1.1),
applying the result of Theorem1, pp. 420 of [14] we have

D+v(x(t)) = lim
h→0+

sup
v(x(t)+hAix(t))−v(x(t))

h
= min

l∈I(x(t))
x(t)′(A′iPl +Pl Ai)x(t)

≤ x(t)′(A′iPi +PiAi)x(t) (3.12)

where the inequality holds from the fact thati ∈ I(x(t)). Finally, remembering thatΠ ∈M and that
x(t)′Pjx(t) ≥ x(t)′Pix(t) for all j 6= i = 1, · · · ,N once again due to the fact thati ∈ I(x(t)), using the
Lyapunov-Metzler inequalities (3.9) one gets

D+v(x(t)) < −x(t)′
(

N

∑
j=1

π ji Pj

)
x(t)

< −
(

N

∑
j=1

π ji

)
x(t)′Pix(t)

< 0 (3.13)
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which proves the proposed theorem since the Lyapunov functionv(x(t)) defined in (3.7) is radially
unbounded.

It is important to observe that Theorem 6 does not require that the set{A1, · · · ,AN} be composed
exclusively by asymptotically stable matrices. Indeed, withΠ ∈ M , a necessary condition for the
Lyapunov-Metzler inequalities to be feasible with respect to{P1, · · · ,PN} is matricesAi + (πii/2)I
for all i = 1, · · · ,N be asymptotically stable. Sinceπii ≤ 0 this condition does not imply on the as-
ymptotical stability ofAi . However, an interesting case occurs when all matrices{A1, · · · ,AN} are
asymptotically stable for which the choiceΠ = 0 is possible and the state switching strategy proposed
preserves stability. Furthermore, if the set{A1, · · · ,AN} is quadratically stable then the Lyapunov-
Metzler inequalities admit a solutionP1 = · · ·= PN = P andI(x(t)) = {1, · · · ,N} for all t ≥ 0. In this
classical but particular case, at anyt ≥ 0, the control lawu(x(t)) = i ∈ {1, · · · ,N} can be chosen arbi-
trarily and asymptotical stability is guaranteed. Hence, Theorem 6, contains as a particular case (since
the Lyapunov-Metzler inequalities do not depend onΠ anymore) the quadratic stability condition.

Remark 1 (Chattering)
Another important feature of Theorem 6 is that chattering in the switching when occurs is always sta-
ble. Indeed, assume thatx∈ Rn belongs to a certain regionC of the state space where the cardinality
of I(x) is greater than one. From the Lyapunov function (3.7), a switching fromi ∈ I(x) to j ∈ I(x) is
possible only ifx′(A′iPj +PjAi)x≤ x′(A′iPi +PiAi)x < 0 where the last inequality follows directly from
(3.9). Hence, we conclude that wheneverx ∈ C the time derivative of the positive definite function
ν(x) = x′Pjx is strictly negative along all trajectories such thatẋ∈ co{Aix : i ∈ I(x)} which implies
that they are asymptotically stable. In the particular case characterized byN = 2, this aspect has
already been treated in [15]. In and [20] it is commented the fact that a Lyapunov function like (3.7)
but with min replaced by max does not exhibit this property, in which instance the chattering must be
ruled out. In this sense, the numerical procedure propose in [13] for the determination of a switching
state dependent control has to be further qualified in order to prevent chattering since when it occurs
instability may be observed.

In the literature, the Lyapunov-Metzler inequalities withΠ ∈M fixed, have been introduced in order
to study theMean-Square(MS) stability of Markov Jump Linear Systems (MJLS). In that context,
the Metzler matrixΠ = Π0 ∈ M is given andΠ′

0 represents the infinitesimal transition matrix of a
Markov chainσ(t) governing the dynamical system (1.1). In this respect, each component of the
vectorλ (t) ∈ Λ is the probability of the Markov chain to be on thei− th logical state and obeys the
differential equation

λ̇ (t) = Π0λ (t) , λ (0) = λ0 ∈ Λ (3.14)

where the eigenvectorλ∞ ∈Λ associated to the null eigenvalue ofΠ0 represents the stationary probabil-
ity vector. Hence, using the fact that the stochastic system under consideration is said to be MS-stable
if

lim
t→+∞

E(‖x(t)‖2) = 0 (3.15)

for any initial statex(0) and any initial probability patternλ0 ∈ Λ, it has been shown (see e.g. [7])
that the system is MS-stable if and only if there exists a set of positive definite matrices{P1, · · · ,PN}
satisfying the Lyapunov-Metzler inequalities (3.9) forΠ = Π0. Numerically speaking, this is a simple
case, since (3.9) reduces to a set of linear matrix inequalities.
A relevant point to be discussed now concerns the existence of a solution of the Lyapunov-Metzler
inequalities (3.9) with respect to the variablesΠ ∈M and{P1, · · · ,PN}. Standard Kronecker calculus
shows that forΠ ∈M fixed, a solution with respect to the remaining variables exists if and only if the
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Nn2-dimensional square matrixJ := A +BC is asymptotically stable, where

A =




A′1⊕A′1 0 · · · 0
0 A′2⊕A′2 · · · 0

0 0
... 0

0 0 · · · A′N⊕A′N


 (3.16)

and

B = Π′
[

0N−1

IN−1

]
⊗ In2 , C =

[ −1N−1 IN−1
]⊗ In2 (3.17)

with the symbols⊕ and⊗ indicating the Kronecker sum and Kronecker product respectively1, 0N−1

denoting a row vector ofN−1 zeros components and1N−1 denoting a column vector ofN−1 ones
components. Hence, the existence of a solution to (3.9) reduces to the existence ofΠ ∈M rendering
matrixJ asymptotically stable. A possible approach to verify the existence of such a matrix is based
on the observation that anyα ≥ 0 andΠ ∈M impliesαΠ ∈M , which from the introduction of this
new degree of liberty makes possible to verify the existence ofα ≥ 0 such thatJ (α) := A +αBC is
asymptotically stable. Putting aside the situation on which all matrices{A1, · · · ,AN} are asymptotically
stable making possible to setα = 0, let us consider the other extreme situation corresponding to
α → +∞. Simple determinant manipulations show that a certain number of eigenvalues goes to−∞
while the other ones that remain finite, coincide with theinvariant zerosof the triple(A ,B,C ).
Fortunately, these invariant zeros can be determined with no big difficulty from the definition

[
µI −A B

C 0

][
ξ
η

]
= 0

with the key observation that matrixC being constant, that is independent ofα andΠ, imposes to the
solution ofC ξ = 0 a vector of compatible dimension with the particular structureξ ′ = [x′ · · · x′],x∈
Rn2

. In addition, takingλ∞ ∈ Λ such thatΠλ∞ = 0, multiplying each sub-equation above byλ∞i and
summing up, it follows that (

µI −
N

∑
i=1

λ∞iA
′
i ⊕A′i

)
x = 0

which, can be rewritten as (
µ I −A′λ∞

⊕A′λ∞

)
x = 0 (3.18)

whereAλ∞ = ∑N
i=1 λ∞iAi . Therefore, asα goes to infinity, the eigenvalues ofJ (α) that remain finite,

tend to the eigenvalues ofA′λ∞
⊕A′λ∞

which are in the left hand plane if and only if so are the eigenvalues
of Aλ∞ . This means that, if there existsλ∞ ∈Λ such thatAλ∞ is asymptotically stable, then anyΠ0∈M
satisfyingΠ0λ∞ = 0 andα a sufficiently large positive number provideΠ = αΠ0 ∈M such that the
Lyapunov-Metzler inequalities are feasible with respect to the remaining variables{P1, · · · ,PN}.
Example 2 To illustrate the above point, let us consider a simple example withN = 2, the pair of
matrices

A1 =
[

0 1
2 −9

]
, A2 =

[
0 1
−2 8

]
(3.19)

and

Π0 =
[ −0.51 0.49

0.51 −0.49

]
∈M (3.20)

1While the Kronecker product is more or less standard, the sum requires a formal definition. In this respect we define the
Kronecker sum of two matricesD andE asD⊕E = D⊗ I + I⊗E. It is important to recall that the eigenvalues of the Kronecker
sumD⊕E are given by all sums of all eigenvalues ofD andE.
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The eigenvector associated to the null eigenvalue ofΠ0 is given byλ ′∞ = [0.49 0.51]. We have deter-
mined numerically that the Lyapunov-Metzler inequalities (3.9) have a solution of the formΠ = αΠ0,
for all α ≥ 615.7374, in accordance to the fact that the invariant zeros of the triple(A ,B,C ) are
−0.33,−0.33,−0.33± j0.226which as discussed before, can alternatively be obtained from the eigen-
values of the asymptotically stable matrixAλ∞ = 0.49A1 +0.51A2, taking all sums.

The Lyapunov-Metzler inequalities introduced in Theorem 6 are difficult to be solved, since one has to
search over the parameters of a Metzler matrix. However, a simple (yet more conservative) numerical
procedure based on line search can be settled to determine its solution. This aspect will be considered
next.

3.3 Guaranteed cost

Let us introduce a guaranteed quadratic cost associated to the proposed state switching control law
(3.10).

Lemma 2 Let Q≥ 0 be given. Assume that there exist a set of positive definite matrices{P1, · · · ,PN}
andΠ ∈M satisfying the Lyapunov-Metzler inequalities

A′iPi +PiAi +
N

∑
j=1

π ji Pj +Q < 0 , i = 1, · · · ,N (3.21)

The state switching control (3.1) withu(x(t)) given by (3.10) makes the equilibrium solutionx = 0 of
(1.1) globally asymptotically stable and

∫ ∞

0
x(t)′Qx(t)dt < min

i=1,··· ,N
x′0Pix0 (3.22)

Proof It has the same pattern of the proof of Theorem 6. The Lyapunov function (3.7) and the
Lyapunov-Metzler inequalities (3.21) yield

D+v(x(t)) <−x(t)′Qx(t) (3.23)

which after integration gives

v(x(t))−v(x(0)) =
∫ t

0
D+v(x(τ))dτ

< −
∫ t

0
x(τ)′Qx(τ)dτ , ∀t ≥ 0 (3.24)

proving thus the proposed lemma since due to the asymptotical stability,v(x(t)) goes to zero ast goes
to infinity.

The numerical determination, if any, of a solution of the Lyapunov-Metzler inequalities with respect
to the variables(Π,{P1, · · · ,PN}) is not a simple task and certainly deserves additional attention. The
main source of difficulty stems from its non-convex nature due to the products of variables and so LMI
solvers do not apply. Perhaps, a point to be further investigated is that its particular structure withπ ji

being scalars may help on the design of an interactive method based on relaxation.
In this paper we pursue an alternative route. The main idea is to get a simpler, although certainly more
conservative stability condition that can be expressed by means of LMIs being thus solvable by the
machinery available in the literature to date. The next theorem shows that working with a subclass of
Metzler matrices, characterized by having the same diagonal elements, this goal is accomplished.
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Theorem 7 LetQ≥ 0 be given. Assume that there exist a set of positive definite matrices{P1, · · · ,PN}
and a scalarγ > 0 satisfying the modified Lyapunov-Metzler inequalities

A′iPi +PiAi + γ(Pj −Pi)+Q < 0 , j 6= i = 1, · · · ,N (3.25)

The state switching control (3.1) withu(x(t)) given by (3.10) makes the equilibrium solutionx = 0 of
(1.1) globally asymptotically stable and

∫ ∞

0
x(t)′Qx(t)dt <

N

∑
i=1

x′0Pix0 (3.26)

Proof The proof follows from the choice ofΠ ∈M such thatπii = −γ and the remaining elements
satisfying

γ−1
N

∑
j 6=i=1

π ji = 1 (3.27)

for all i = 1, · · · ,N. Taking into account thatπ ji ≥ 0 for all j 6= i = 1, · · · ,N multiplying (5.24c) byπ ji ,
summing up for allj 6= i = 1, · · ·N and finally multiplying the result byγ−1 > 0 we get

A′iPi +PiAi +Q < −
N

∑
j 6=i=1

π ji (Pj −Pi)

< −
N

∑
j=1

π ji Pj (3.28)

which being valid for alli = 1, · · · ,N are the Lyapunov-Metzler inequalities (3.21). From Lemma 2,
the upper bound (3.22) holds which trivially implies that (3.26) is verified. The proposed theorem is
thus proved.

The basic theoretical features of Theorem 6 and Lemma 2 are still present in Theorem 7. The most
important is that the asymptotic stability of the set of matrices{A1, · · · ,AN} still is not required. In
addition, notice that the guaranteed cost (3.26) is clearly worse than the one provided by Lemma 2 but
the former being convex makes possible to solve the problem

min
γ>0,P1>0,··· ,PN>0

{
N

∑
i=1

x′0Pix0 : (3.25)

}
(3.29)

by LMI solvers and line search. The next example illustrates some aspects of the theoretical results
obtained so far.

Example 3 Consider the system (1.1) withN = 2 and matrices{A1,A2} given by

A1 =
[

0 1
2 −9

]
, A2 =

[
0 1
−2 2

]
(3.30)

which, as it can be easily verified by inspection, are both unstable. ConsideringQ = I and the initial
conditionx0 = [1 1]′, problem (3.29) has been solved by line search fixingγ and minimizing its objective
function, denoted byδ (γ), with respect to the remaining variables. Figure 3.4 shows the behavior of
the functionδ (γ) which enables us to determine its minimum valueδ ∗ = 23.56, corresponding to
γ∗ = 11.80. It is important to stress that, in this particular example, the functionδ (γ) has a unique
minimum. However, we do not have any evidence that this is a generic property valid in all cases.
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Figure 3.4: Guaranteed cost as a function ofγ.
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Figure 3.5: Time simulation of the state switching control.

Figure 3.5 shows the trajectories of the state variablex(t) ∈ R2 versus time for the system controlled
by the state switching ruleσ(t) = u(x(t)) given by (3.10) with the positive definite matrices

P1 =
[

6.7196 1.6293
1.6293 1.0222

]
, P2 =

[
6.0825 2.1293
2.1293 2.2206

]
(3.31)

obtained from the optimal solution of problem (3.29). As it can be seen, the proposed control strategy
is very effective to stabilize the system under consideration.
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Chapter 4

Optimal control

The problem of determining optimal control laws for hybrid and switched systems has been widely
investigated in the last years, both from theoretical and from computational point of view [44], [50],
[47], [48], [49]. For continuous-time switched systems, most of the literature studied necessary and/or
sufficient conditions for a trajectory to be optimal, with the introduction of new versions of the min-
imum principle [31], [34], [35], [36] [51], [52]. The problem is also investigated in [37] for the case
of two subsystems. More in detail, in [53], [35], the switched system is embedded into a larger family
of nonlinear systems that can be handled directly by classical control theory. This idea was further ex-
ploited in [37], where necessary conditions for optimality of the embedded problem are derived using
the maximum principle. When the necessary condition indicate an optimal solution of bang-bang type,
a solution for the original switched problem may be derived. In [38], the problem of optimal control of
autonomous switched systems was studied for a quadratic cost functional on an infinite horizon and a
fixed number of switches. In this setting, the optimal control law can be computed by a discretization
of the unitary semi-sphere. In later works, the same procedure was extended to the case where an
infinite number of switches are allowed, [39], [40].

A special class of optimal control problems concerns autonomous switched systems, where the con-
tinuous control is absent and only the switching signal must be determined [54]. In particular, the
sequence of active subsystems may be arbitrary, or it may be subject to constraints given as a pre-
specified sequence with arbitrary length or as an arbitrary sequence with pre-specified length.

This chapter is organized as follows. The first section studies the optimal control problem for an au-
tonomous linear switched system on a finite time interval. The switched system is embedded into a
larger family of nonlinear systems; sufficient conditions for optimality on a finite horizon are devel-
oped using Hamilton-Jacobi-Bellman equation. No constraints are imposed on the switching and the
performance index contains no penalty on the switching. The presented approach is effective in finding
the optimal switching signal only when the corresponding trajectory is not Zeno, i.e. fast switching
along the switching surfaces does not occur. Exploiting some properties of the optimal control, a
numerical procedure for the solution of the problem based on the discretization of the state space is
proposed.

In the second section the simple but important class of second order oscillating systems is considered
and an algorithm is provided to find the optimal switching rule over an infinite horizon.

33
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4.1 Problem formulation

In this paper we consider the following autonomous linear switched system

{
ẋ(t) = Aσ(t)x(t)

x(t0) = x0
(4.1)

wherex∈ Rn is the continuous state and

σ(t) : [0, t f ]→S = {1, . . . ,N}

is a piecewise constant function of time, called switching signal. We say that the subsystemΣs is
active at timet whenσ(t) = s. The state trajectory evolution of such a system can be controlled by
choosing an appropriate switching sequenceΣ = {(t0,s0),(t1,s1), . . . ,(tK ,sK)} defined in[t0, t f ], with
0≤K ≤∞, t0≤ t1≤ . . .≤ tK ≤ t f , andsk ∈S . This switching sequence indicates thatσ(t) = sk, ∀t ∈
[tk, tk+1), so thatẋ(t) = Askx(t) in [tk, tk+1). No assumptions about the number of switchings nor about
the sequence of active subsystems are made. However, for the switched system to be well-behaved, we
consider only non Zeno sequences, which switch at most a finite number of times in every finite interval
[ti , t j ] with 0≤ ti < t j ≤ t f . Finally, the state of system (4.1) does not undergo jump discontinuities at
the switching times.
Quadratic optimal control problem for autonomous linear switched system can be defined introducing a
quadratic cost functional to be minimized. Assuming that both the subsystems and the cost functional
are time invariant, it is possible to set the initial time tot0 = 0 without loss of generality. The cost
functional to be minimized over all admissible switching sequences is given by

J(x0,x,σ) =
∫ t f

0

1
2

x(t)TQx(t)dt+
1
2

x(t f )TSx(t f ) (4.2)

wherex(t) is a solution of (4.1) with the switching signalσ(t). The matricesQ andS are assumed
to be symmetric and positive semidefinite. The optimal switching signal, the corresponding trajectory
and the optimal cost functional will be denoted asσ◦(t,x0), x◦(t) andJ(x0,x◦,σ◦) respectively.
In order to obtain a more tractable optimal control problem, the switched system (4.1) is embedded [35]
into the larger family 




ẋ(t) = ∑
s∈S

us(t)Asx(t)

x(0) = x0

(4.3)

parameterized byN variablesus(t) subject to the constraints





us(t)≥ 0, ∀s

∑
s∈S

us(t) = 1 (4.4)

The vectoru(t) = [u1(t) . . . uN(t)]T can be regarded as a piecewise-continuous input of the embedding
system. The set of trajectories of the embedding system contains the trajectory of the switched system,
obtained constrainingu(t) to be a simplex, i.e. a vector withui(t) = 1 andu j(t) = 0, j 6= i when
σ(t) = i.
The constraints regarding the discrete range ofu(t) can be handled following optimal control theory in
Pontryagin [56], [55]. Moreover, if the optimal solution of the embedding problemu(t) is the vertex of
a simplex, it is also the optimal solution of the original switched problem, otherwise only a suboptimal
solution can be determined [37].
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The quadratic optimal control problem for the embedding system (4.3) is thus reformulated as follows.
Given a fixed final timet f , find the control inputu◦(t) and the corresponding state trajectoryx◦(t) such
that the cost functional

J(x0,x,u) =
∫ t f

0

1
2

x(t)TQx(t)dt+
1
2

x(t f )TSx(t f ) (4.5)

evaluated forx(t) = x◦(t) is minimum. Of course, the infinite horizon optimal control problem is
obtained by lettingt f → ∞.

4.2 Finite-time optimal control

In this section we consider the optimal control problem in a finite horizon length.

4.2.1 Solution of the embedding optimal control

In the classical control theory, global sufficient conditions for optimality have been developed as a
strengthening of the necessary conditions. Sufficient conditions introduce certain assumptions about
the regularity of the functions involved and about the behaviour of the cost functional which must
satisfy the Hamilton-Jacobi-Bellman equation [55], [56]. It is easy to see that even the simple case of
a linear autonomous switched systems with quadratic cost functional does not match all these hypoth-
esis. Introducing the concept of generalized solution and with suitable assumptions, however, such
conditions may still be applicable at least for those cases where the optimal trajectories are non Zeno.
First of all, we cannot rely on the differentiability of the solution of (4.3). Nonetheless, for the non
Zeno trajectories, the consequent mathematical difficulties can be overcome considering the definition
of a solution in the sense of Carathéodory [57], namely a functionx(t) : R+ → Rn is said to be a
solution of (4.3), if it is absolute continuous on each compact subset ofR+ and it satisfies (4.3) for
almost allt ≥ 0.

The hamiltonian function relative to system (4.3) and cost functional (4.5) is given by

H(x,u, p) =
1
2

xTQx+ pT ∑
s∈S

usAsx (4.6)

In general, the hamiltonian is not regular in the classical sense, having as a function ofu more than
one minimum for somex andp. Therefore, the H-minimizing control

ûs(x(t), p(t)) =

{
1 s= argmin

s∈S

{
p(t)TAsx(t)

}

0 otherwise
(4.7)

cannot be defined univocally for allt. In particular, due to the role of the inputu in the embedding sys-
tem, the switching surfaces coincide with the surfaces whereH(x,u, p) has more than one minimum.
The study of the general case is prevented, but classical results still apply if the hamiltonian function
is ‘regular enough’. Here we will focus on the class of switched systems for which the following
assumption holds.

Assumption 1 For each initial statex0 the optimal trajectory of the switched system(4.1)does not lie
on the switching surfaces, i.e. for almost everyt ∈ [0, t f ] the hamiltonianH(x◦(t),u, p(t)) has, as a
function ofu, a unique global minimum inu◦(t) = û(x◦(t), p(t)) for which it holds

H(x◦(t),u◦(t), p(t)) < H(x◦(t),u, p(t)) (4.8)

whenp(t) satisfies a suitable differential equation.
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In general it is not possible to determine a priori whether such an assumption is satisfied or not. How-
ever there are a number of significant cases where the sliding modes can be ruled out, for example
through simple graphical inspection for the class of second-order switched systems.
If Assumption 1 is satisfied, the Hamilton-Jacobi-Bellman equation (HJBE)

0 =
∂V
∂ t

(x(t), t)+

+H

(
x(t), û

(
x(t),

∂V
∂x

(x(t), t)T
)

,
∂V
∂x

(x(t), t)T
) (4.9)

with the boundary condition

V(x(t f ), t f ) =
1
2

x(t f )TSx(t f ) (4.10)

has a generalized solutionV(x(t), t), which is defined and differentiable for almost allt ∈ [0, t f ].
Before stating the main result of the paper, we introduce a slight modification of the Lemma of

Carath́eodory [55], whose proof is omitted for the sake of conciseness.

Lemma 3 Suppose that for almost allt ∈ [0, t f ], the functionL?(x(t),u) has, as a function ofu, a
unique absolute minimumu?(x(t)) for which it zeroes

0 = L?(x(t),u?(x(t))) < L?(x(t),u) ∀u 6= u?(x(t))

Let u◦(t) be an admissible control andx◦(t) be the corresponding state trajectory, such thatu◦(t) =
u?(x◦(t)). Thenu◦(t) is an optimal control relative tox0 and the cost functional

W(x0,x
◦,u◦) =

∫ t f

0
L?(x◦(t),u◦(t))dt = 0

while for any other admissible controlu1(t) and state trajectoryx1(t)

W(x0,x
◦,u◦)≤W(x0,x

1,u1)

Theorem 8 Let u◦(t) defined in[0, t f ] be an admissible control relative tox0 andx◦(t) be the corre-
sponding state trajectory. IfP(t) is a symmetric positive definite solution of the system of differential
equations

ẋ◦(t) = ∑
s∈S

u◦s(t)Asx
◦(t) (4.11)

−Ṗ(t) = ∑
s∈S

u◦s(t)A
T
s P(t)+P(t) ∑

s∈S

u◦s(t)As+Q (4.12)

u◦(t) = û(x◦(t),x◦(t)TP(t)) (4.13)

with the boundary conditionx(0) = x0 andP(t f ) = S, the controlu◦(t) is an optimal control relative
to x0 and the value of the optimal cost functional is

J(x0,x
◦,u◦) =

1
2

xT
0 P(0)x0 (4.14)

ProofThe scalar function

V(x(t), t) =
1
2

x(t)TP(t)x(t) (4.15)
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is a generalized solution of the HJBE (4.9). In fact

∂V
∂x

(x(t), t) = x(t)TP(t)

∂V
∂ t

(x(t), t) =
1
2

x(t)T Ṗ(t)x(t)

so that for almost allt ∈ [0, t f ]

1
2

x(t)T Ṗ(t)x(t)+H
(
x(t), û(x(t),x(t)TP(t)),x(t)TP(t)

)
=

=
1
2

x(t)T Ṗ(t)x(t)+
1
2

x(t)T ∑
s∈S

u◦(t)AT
s P(t)x(t)+

+
1
2

x(t)TP(t) ∑
s∈S

u◦(t)Asx(t)+
1
2

x(t)TQx(t) = 0

Moreover it satisfies the boundary condition

V(x(t f ), t f ) =
1
2

x(t f )TP(t f )x(t f ) =
1
2

x(t f )TSx(t f )

Define the function

L?(x,u) =
∂V
∂ t

(x, t)+H

(
x,u,

∂V
∂x

(x, t)T
)

(4.16)

From (4.13) it follows

L? (x◦(t),u◦(t)) = L?

(
x◦(t), û

(
x◦(t),

∂V
∂x

(x◦(t), t)T
))

=

=
∂V
∂ t

(x◦(t), t)+

+H

(
x◦(t), û

(
x◦(t),

∂V
∂x

(x◦(t), t)T
)

,
∂V
∂x

(x◦(t), t)T
)

= 0

sinceV(x◦(t), t) is a solution of the Hamilton-Jacobi equation. Having assumed that for almost every
t the hamiltonianH(x◦(t),u,x◦(t)TP(t)) has, as a function ofu, a unique global whenx(t) andP(t)
satisfy (4.11) and (4.12), it follows from (4.16) that for almost allt and∀u 6= u?

(
x◦(t),x◦(t)TP(t))

)

0 = L?
(
x◦(t),u?(x◦(t),x◦(t)TP(t))

)
< L?(x◦(t),u) (4.17)

since (4.8) and (4.17) differ for a term which does not depend onu. Application of Lemma 3 shows
that

∫ t f

0
L?(x◦(t),u◦(t))dt = 0

∫ t f

0
L?(x1(t),u1(t))dt ≥ 0

whereu1 is another admissible control fromx0. Finally, for any given controlu(t) and the correspond-
ing state trajectoryx(t) it holds

L?(x(t),u(t)) =
∂V
∂ t

(x(t), t)+H

(
x(t),u(t),

∂V
∂x

(x(t), t)T
)

=

=
∂V
∂ t

(x(t), t)+L(x(t),u(t))+
∂V
∂x

(x(t), t)T ẋ(t) =

= L(x(t),u(t))+
dV
dt

(x(t), t)
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from which we obtain

∫ t f

0
L?(x◦(t),u◦(t))dt =

=
∫ t f

0
L(x◦(t),u◦(t))dt+

∫ t f

0

dV
dt

(x◦(t), t)dt =

=
∫ t f

0
L(x◦(t),u◦(t))dt+V(x◦(t f ), t f )−V(x0,0) =

= J(x0,x
◦,u◦)−V(x0,0) = 0

and similarly ∫ t f

0
L?(x1(t),u1(t))dt = J(x0,x

1,u1)−V(x0,0)≥ 0

Thus

J(x0,x
◦,u◦) = V(x0,0) =

1
2

xT
0 P(0)x0 ≤ J(x0,x

1,u1)

and the Theorem is established.

4.2.2 Solution of the switched optimal control

The optimal controlu◦(t) for the embedding system (4.13) is always of bang-bang type due to the
nature of the hamiltonian (at least when the optimal control does not involve sliding motions). Thus,
the optimal switchingσ◦(t,x0) may be readily derived from it.

Theorem 9 Let σ◦(t,x0) : [0, t f ]×Rn → S be an admissible switching signal relative tox0 and
x◦(t) be the corresponding trajectory. IfP(t) is a symmetric positive definite solution of the system of
differential equations 




ẋ◦(t) = Aσ◦(t,x0)x
◦(t)

−Ṗ(t) = AT
σ◦(t,x0)P(t)+P(t)Aσ◦(t,x0) +Q

σ◦(t,x0) = argmin
s∈S

{
x◦(t)TP(t)Asx

◦(t)
} (4.18)

with the boundary conditionx◦(0) = x0 andP(t f ) = S, thenσ◦(t,x0) is an optimal switching signal
relative tox0 and the value of the optimal cost functional is

J(x0,x
◦,σ◦) =

1
2

xT
0 P(0)x0 (4.19)

ProofThe proof follows trivially from Theorem 8, by letting

σ◦(t,x0) = s with s= argmin
s∈S

{
x◦(t)TP(t)Asx

◦(t)
}

Note that for a linear switched system and quadratic cost functional, the optimal switching signal in
(4.18) shows some interesting properties which can be exploited to simplify the numerical determina-
tion of the optimal solution.

Corollary 1 The optimal switching signalσ◦(t,x0), as a function of time, is invariant upon scaling of
the initial statex0.



4.2. FINITE-TIME OPTIMAL CONTROL 39

ProofGiven an initial statex0, let σ̄◦(t) = σ◦(t,x0) be the optimal switching signal. Now consider
the initial stateαx0 and define a new optimal control problem with the change of variablez = 1

α x
where the system is





ż(t) = Aσ(t)z(t)

z(0) = z0 =
1
α

αx0 = x0

and the cost functional

Ĵ(z0,z,σ) =
α2

2

∫ t f

0
z(t)TQz(t)dt+

α2

2
z(t f )TSz(t f )

The new problem is formally equivalent to the original one except for a scaling in the cost functional,
which does not actually alter the optimal solution in time.

Provided that the optimal switching signal does not depend on the scaling of the initial state, an equiv-
alent formulation of the optimal solution can be obtained referring to a normalized state vector. Such
a formulation may help during the numerical integration of (4.18).

Corollary 2 Let ξ (t) = x(t)
‖x(t)‖ then the optimal switching signal

σ◦(t,x0) = σ̃◦
(

t,
x0

‖x0‖
)

= σ̃◦ (t,ξ0)

whereσ̃◦(t,ξ0) is the solution of the system of differential equations





ξ̇ (t) =
(
Aσ̃◦(t,ξ0)− trace(Aσ̃◦(t,ξ0)ξ (t)ξ (t)T)I

)
ξ (t)

−Ṗ(t) = AT
σ̃◦(t,ξ0)P(t)+P(t)Aσ̃◦(t,ξ0) +Q

σ̃◦(t,ξ0) = argmin
s∈S

{
trace(P(t)Asξ (t)ξ (t)T)

} (4.20)

with the split boundary conditions




ξ (0) = ξ0 =
x0

‖x0‖
P(t f ) = S

(4.21)

The value of the optimal cost functional is

J(x0,x
◦, σ̃◦) =

1
2

xT
0 P(0)x0 (4.22)

ProofObserving that for allt except the switching instants

d
dt
‖x(t)‖=

d
dt

√
x1(t)2 + . . .+xn(t)2 =

=
2x1(t)ẋ1(t)+ . . .+2xn(t)ẋn(t)

2
√

x1(t)2 + . . .+xn(t)2
=

x(t)TAσ̃◦(t,ξ0)x(t)
‖x(t)‖
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we can write

ξ̇ (t) =
ẋ(t)
‖x(t)‖ −

x(t)
d

dt
‖x(t)‖

‖x(t)‖2 =

=Aσ̃◦(t,ξ0)
x(t)
‖x(t)‖ −

x(t)
‖x(t)‖

d

dt
‖x(t)‖
‖x(t)‖ =

=Aσ̃◦(t,ξ0)ξ (t)−ξ (t)
x(t)T

‖x(t)‖Aσ̃◦(t,ξ0)
x(t)
‖x(t)‖ =

=Aσ̃◦(t,ξ0)ξ (t)− trace(ξ (t)TAσ̃◦(t,ξ0)ξ (t))ξ (t) =

=
(
Aσ̃◦(t,ξ0)− trace(Aσ̃◦(t,ξ0)ξ (t)ξ (t)T)I

)
ξ (t)

Finally, from the properties of the trace operator it follows that

argmin
s∈S

{
xT(t)P(t)Asx(t)

}
=

= argmin
s∈S

{
trace(P(t)Asx(t)xT(t))

}
=

= argmin
s∈S

{
trace(P(t)Asξ (t)ξ T(t))

}

Thus (4.20) are simply a rewriting of (4.18).

4.2.3 Numerical determination of the optimal switching signal

The determination of the control signal both in the embedding and in the switching case cannot be
performed through a simple integration of a differential matrix equation of Lyapunov type (as in the
linear case). The methodology proposed in Corollary 2 requires the solution of a nonlinear system of
differential equations (4.20) with the split boundary conditions (4.21), due to the dependence of the
system structure on the switching signal.
This problem goes under the name of ‘two point boundary value problem’, as opposed to usual single
point boundary value problems. While in the single point case it is always possible to start an accept-
able solution at one edge of the interval and continue it through the interval by numerical integration,
in the two point case the boundary conditions at the starting (final) point do not determine a unique
solution to start with. Additional troubles come from the discrete nature of the switching signal. The
easiest way to solve a two point boundary value is to use the ‘shooting technique’ [46], where a two
boundary problem is reduced to an initial (final) value problem with a random choice of the initial
(final) conditions to complete the boundary conditions at one end of the time interval. The equations
are then integrated with standard techniques and corrections are made for the initial guess; the process
is repeated until convergence is reached.
Since the initial conditionx0 is given but arbitrary, a slight modification of the shooting technique
may be adopted. The space of the solutions is systematically explored, choosing an arbitrary value
for the unspecified terminal condition (the final statex(t f )) and computing the corresponding optimal
solution integrating backward in time. Computation continues until the state space is so well covered
with optimal solutions that a suboptimal solution can be determined for any arbitrary initial state.
The invariance of the time-dependent switching rule upon scaling of the initial state comes in handy
to reduce the region of the state space to explore. We can restrict, for example, to the set of final states
with a given norm

B f = {ξ f : ‖ξ f ‖= 1} (4.23)
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since the same scaling applies to the final states, too. Note that, ifx∈ Rn thenB f is an hypersurface
of dimensionn−1. As an example, ifx∈ R2, a possible choice for the terminal hypersurface is the
unit semicircle.

Algorithm 1 Procedure for the computation of a suboptimal switching sequence

1. Consider a suitable discretization of the terminal hypersurface(4.23)by letting

B̄ f = {ξ (i)
f : ξ (i)

f ∈B f , i = 1, . . . ,Nf } (4.24)

2. For each point belonging toB̄ f equations(4.20)are integrated backward in time, with the one
point boundary condition {

ξ (t f ) = ξ (i)
f

P(t f ) = S
(4.25)

in order to determine the initial point of the trajectoryx(i)
0 and the corresponding switching

sequenceΣ(i) =
{
(t(i)1 ,s(i)

1 ), . . . ,(t(i)K ,s(i)
K )

}
.

3. Given a genericx0 computeξ0 =
x0

‖x0‖

(a) if ξ0 = ξ (i)
0 for somei, then theoptimalcontrol lawΣ(i) is appliedforward, remembering

that the switching signal is invariant upon scaling of the initial state;

(b) if ξ0 6= ξ (i)
0 for all i, then the control lawΣ( j) with

j = arg min
i=1,...,Nf

‖ξ0−ξ (i)
0 ‖

is appliedforward, obtaining asuboptimalsolution to the switched control problem.

The proposed procedure is quite simple to implement; however its applicability tends to be reduced
as the dimension of the state space or the number of points on the terminal hypersurface increase.
Numerical problems may also appear during the integration of (4.20).

4.2.4 A Numerical Example

Consider a linear switched system (4.1) with three stable second-order subsystems

A1 =
[

0 1
−2 −1

]
A2 =

[
0 2
−1 −1

]
A3 =

[
0 1.5
−1 −1.5

]

and the cost functional (4.2) witht f = 2 and with

Q =
[
1 0
0 1

]
S=

[
10 0
0 10

]

Equations (4.20) are integrated backward in time, considering as a terminal boundary the points on
the unit semicircleB f =

{
ξ f : ξ f = [cos(θ) sin(θ)]T , θ ∈ [0, π)

}
. Fig. 4.1 shows the optimal tra-

jectories obtained for the switched system, when the semicircle is divided into 20 points uniformly
distributed. Fig. 4.2 shows the same trajectories scaled so that the initial point of each trajectory
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Figure 4.1: Optimal trajectories in the state space with final point on unit semicircle, obtained through
backward integration of (4.20).

(marked with a small circle) lies on the unit semicircle. It is apparent that such points are not uni-
formly distributed on the semicircle, even if the final points were so. In the general case, it is not
possible to foresee how well the state space will be covered starting from a particular discretization of
the terminal hypersurface.

Fig. 4.3 shows how the value of the cost functional is affected by the interpolation proposed in Algo-
rithm 1, comparing the optimal value of the cost functional with the suboptimal value obtained with
the algorithm previously described. The suboptimal cost functional (crosses on the figure) is obtained
computing the optimal control law through backward integration for 20 points on the unit semicircle
and then applying Algorithm 1 to 60 points equally distributed on this surface. The optimal cost (solid
line) is obtained considering a finer discretization of the terminal hypersurface (120 points). In this
particular example the range of worsening due to suboptimality is within 10% and it is concentrated in
the areas less covered by initial points.
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Figure 4.2: Optimal trajectories in the state space obtained through scaling in order to have initial point
on the unit semicircle.
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Figure 4.3: Comparison between optimal (solid) and suboptimal (cross) cost functional, withx0 =
[cos(θ) sin(θ)]T
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4.3 The switching oscillating system

In this section our analysis focuses on a second order system of the form

ÿ(t) =−αi ẏ(t)−β jy(t)+w(t) (4.26)

wherey(t) ∈ R, i ∈ Ωα = {1,2, · · · ,nα}, j ∈ Ωβ = {1,2, · · · ,nβ}, and the values ofαi andβ j are
known parameters. In mechanical systemsαi can be interpreted as the damping coefficient andβ j as
the stiffness coefficient. The inputw(t) is a scalar disturbance to be specified later.

The above model lends itself to describe a large variety of physical systems, whose coefficients may
be switched within a finite set in order to improve some given performance. We say that the system
is operating in the(i, j) mode when the underlying parameters take the values(αi ,β j). Let σ(t) ∈
Ωα ×Ωβ represent the switching signal. Asσ(t) changes, the evolution of the system is switched
from one mode to another. Notice that the positiveness ofαi and β j is a necessary and sufficient
condition for the stability of the single(i, j) mode. However, in general, even if all modes are stable,
there might exist a switching signal that makes the resulting time-varying system unstable, [15].

Let us now introduce the performance variable (scalar or2-dimensional vector)

z(t) = γ jy(t)+δi ẏ(t)

and the performance index

J =
∫ ∞

0
z(t)′z(t)dt (4.27)

The (vector) coefficientsγ j , j = 1,2, · · · ,nβ and δi , i = 1,2, · · · ,nα , may depend on the switching
signalσ(t) in order to weight differently the contribution of the individual modes in the performance
index.

Our aim is at finding a state-feedback strategyσ = u(y, ẏ) that minimizesJ whenw(·) = 0 and the
initial state(y(0), ẏ(0)) is given, albeit arbitrary. Notice that this problem admits a solution whenever
the switched system is stabilizable, see [15]. This occurs for instance when a single(i, j) mode is
stable. The problem generalizes to switched system the classical linear quadratic optimal control
theory. It is interesting to stress that the solution to this problem also provides the optimal switching
strategy in the case when the initial state is zero andw(t) is an impulsive signal. Indeed, the latter
situation reduces to the former by taking an initial statey(0) = 0 andẏ(0) = 1. In addition the optimal
strategy minimizes the variance ofz(t) whenw(t) is a white noise process.

4.3.1 Computation of the optimal switching

The optimal control problem for the switched system can be solved by a suitable adaptation of the
Hamilton-Jacobi equation, see e.g. [18]. To compact the notation we are well advised to rewrite the
system in state-space form

ẋ(t) = Aσ(t)x(t)+Bw(t) (4.28)

z(t) = Eσ(t)x(t) (4.29)

where

x =
[

y
ẏ

]
, Aσ =

[
0 1
−β j −αi

]
, B =

[
0
1

]
, Eσ =

[
γ j δi

]

The solution to the optimal control problem exists if it is possible to compute a continuous, piecewise
differentiable and positive definite functionV(y, ẏ) = V(x) satisfying

0 = min
σ

(
∂V
∂x

Aσ x+x′E′σ Eσ x

)
(4.30)
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The optimal switching rule is then given by

σ = u(y, ẏ) = u(x) = argmin
σ

(
∂V
∂x

Aσ x+x′E′σ Eσ x

)
(4.31)

andV(x(0)) represents the optimal value of the performance index whenx(0) is the initial state. It
is obvious that a sufficient condition for the existence of the optimal solution is the existence of a
stabilizing switching rule. For instance, this condition is guaranteed when one of the modes is already
stable or when there exists a stable convex combination of theM = nαnβ modes, see e.g. [15].

The solution to equation (4.30) can be found through an iterative numerical procedure. It is expedient
to perform a change of coordinates from the phase plane(y, ẏ) to the polar coordinates(ρ,θ). To this
purpose we write

x =
[

ρcos(θ)
ρsin(θ)

]
, W(ρ ,θ) = V(x),

∂V
∂x

=
[

∂W
∂ρ

∂W
∂θ

][
cos(θ) sin(θ)

−ρ−1sin(θ) ρ−1cos(θ)

]

Notice now that the optimal switching rule is invariant with respect to a scaling of the norm ofx(0)
and a change of sign. Consequently, for each real numberε and each initial statex(0) ∈ R2, we have
V(εx(0)) = ε2V(x(0)). This reflects in simple constraints forW(ρ,θ), namelyW(ρ ,θ) = ρ2W̄(θ)
andW̄(θ − π) = W̄(θ). By using the polar coordinates and recalling the definitions ofAσ andEσ ,
equation (4.30) can be equivalently rewritten as

0 = min
σ

H(θ ,σ) (4.32)

where

H(θ ,σ) = 2sin(θ)((1−β j)cos(θ)−αisin(θ))W̄ (4.33)

−(
sin(θ)2 +β jcos(θ)2 +αisin(θ)cos(θ)

) dW̄
dθ

+(γ jcos(θ)+δisin(θ))′ (γ jcos(θ)+δisin(θ))

As obvious, the role ofρ becomes immaterial and the only unknown is the functionW̄(θ). This
means that the switching surfaces are straight line in the phase plane. Moreover, beingH(θ +π,σ) =
H(θ ,σ), such surfaces turn out to be symmetric with respect to the origin and the modes activation
regions are cones, as already known, see e.g. [39].

The problem is then to find a solution̄Wo(θ), θ ∈ [0,π), and the optimal switching strategyσ as a
function ofθ , namely

σo = uo(θ) = argmin
σ

H(θ ,σ) (4.34)

We have devised a simple discretization algorithm to work out the solution. Precisely, consider a
discretization of the upper unit semicircleθ = k∆θ , ∆θ = π

N , k= 0,1, · · · ,N−1 and take the symmetric
approximation of the derivative, i.e.

dW̄
dθ

' W̄(θ +∆θ)−W̄(θ −∆θ)
2∆θ

, W̄(−∆θ) = W̄((N−1)∆θ), W̄(π) = W̄(0)

Now letting

s=




σ(0)
σ(∆θ)
σ(2∆θ)

...
σ((N−1)∆θ)




, v =




W̄(0)
W̄(∆θ)
W̄(2∆θ)

...
W̄((N−1)∆θ)




, h(s) =




H(0,σ(0))
H(∆θ ,σ(∆θ))

H(2∆θ ,σ(2∆θ))
...

H((N−1)∆θ ,σ(N−1)∆θ)



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we can rewrite (4.33) as
h(s) = L(s)v+m(s) (4.35)

where theN2 square matrixL(s) and the vectorm(s) can be easily deduced from (4.33). Notice that
L(s) is a tridiagonal matrix except for the first and last rows. The algorithm starts with an initial
vectorv(0), for instance a vector with identical positive entries, or the one obtained from the Lyapunov
function of a stable mode. Then, the core of the algorithm is based on equations (4.32), (4.34) and
(4.35). The main iteration step is to compute

s(i) =




σ(i)(0)
σ(i)(∆θ)
σ(i)(2∆θ)

...
σ(i)((N−1)∆θ)




andv(i+1) in the following way

s(i) = argmin
s

(
L(s)v(i) +m(s)

)

v(i+1) = −L(s(i))
−1m(s(i))η +(1−η)v(i)

where the above minimization of the vectorL(s)v(i) + m(s) is considered elementwise andη ∈ (0,1]
is a parameter controlling the smoothness of the solution. The algorithm ends when‖v(i?+1)− v(i?)‖
is smaller than a given tolerance. The entries ofs(i?) yield the optimal control strategy in theθ grid
points. Finally, the optimal value of the performance index isJo = ρ(0)2W̄(θ(0)). This last value, in
the grid points, can be found by taking the appropriate entry of vectorv(i?). The convergence analysis
of the algorithm as well as its computational complexity are worth of further investigation. However,
the algorithm was tested in many examples and convergence was always observed when at least one
mode was stable.

4.3.2 A special case

This section is mainly devoted to discuss the special situation of equation (4.26) when the stiffness
parameterβ j is fixed, i.e.Ωβ = {1}, β1 = β > 0, and the damping parameterαi may switch between
two values, i.e.Ωα = {1,2}, α1 = αmin≥ 0, α2 = αmax> αmin. For simplicity we setαmin = 0. We
assume that the performance index is the integral ofÿ(t)2, so thatδi = αi andγ j = β . In mechanical
systems this corresponds to minimizing the integral of the squared acceleration. The case when also
the parameterβ j can switch is briefly discussed at the end of the section.
The algorithm presented in the previous section has been run for different values ofβ andαmax and
N = 500. In all outcomes the optimal switching surfaces have the shape drawn in Figure 4.41. As
can be noticed, one commutation occurs when the velocityẏ changes its sign, whereas the second
commutation is triggered by the crossing of a straight line with angleθ ?(αmax,β ). Therefore, the
optimal strategy suggests that a null damping coefficient is more effective wheny andẏ have the same
sign and the ratiȯy/y is below a given threshold, namelytan(θ ?). Figure 4.5 shows the value (in
degrees) ofθ ?(αmax,β ) as a function ofαmax for different values ofβ . In order to illustrate the role
of the switching rule, in Figure 4.6 the phase portrait of the optimal switched system is plotted for the
particular choiceαmax= 1, β = 1.
Finally, we have computed the performance index corresponding to the particular initial condition
θ(0) = π/2 andρ(0) = 1. In Figure 4.7 the optimal performance indexJo is plotted againstαmax

for different values ofβ . The dashed curves correspond to theL2 performance associated with the
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Figure 4.4: Shape of the switching surfaces
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Figure 4.9: Optimal switching surfaces with both switching damping and switching stiffness

constant damping coefficientαmax. It is apparent that the switched damping improves significantly on
the constant specially for high values ofαmax.

The transient behavior of̈y(t) is plotted in Figure 4.8 in the caseαmax= 1. The solid curve corresponds
to the optimal switching (OS), while the dashed curve is obtained with constant dampingαmax. The
advantage of commuting toαmin = 0 at appropriate time-instants is apparent.

To enlighten the potentiality of the algorithm, we have considered the same optimization problem
by allowing, in addition, for a switching stiffness parameter, namelyΩβ = {1 ,2}, β1 = βmin > 0,
β2 = βmax > βmin. For the sake of conciseness, we report the results only for the caseαmax = 1,
βmax = 1, βmin = 0.5. In Figure 4.9 the resulting optimal switching surfaces are shown. This more
complicated switching rule obviously gives a better performance. For instance, the performance index
associated withθ(0) = π/2 andρ(0) = 1 is Jo = 0.664, that is lower than the corresponding points in
Figure 4.7 (curvesβ = 1 andβ = 0.5).
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4.3.3 An application

This section discusses a practical application of the optimal switching control design presented before.
Precisely, we consider the problem of comfort-oriented control of a semi-active suspension system
in road vehicles. Our aim is to compare the achievable performance with the one provided by the
classical switching rule based on the so-called two-state Sky-Hook (SH) approach, [43]. The model is
as follows:

Mξ̈ (t) = −c(t)(ξ̇ (t)− ξ̇t(t))−k(ξ (t)−ξt(t))+k∆s−Mg

mξ̈t(t) = c(t)(ξ̇ (t)− ξ̇t(t))+k(ξ (t)−ξt(t))−kt(ξt(t)−ξr(t))−k∆s+kt∆t −mg

ċ(t) = −ηc(t)+ηcin(t)

whereξ (t), ξt(t) and ξr(t) are the vertical position of the body, the unsprung mass and the road
profile, respectively. The coefficientsM andm are the quarter-car body mass and the unsprung mass
(tire, wheel, brake, etc...), respectively. The parametersη ,k andkt are the bandwidth of the active
shock absorber, the stiffness of the suspension spring and of the tire, respectively. The coefficients
∆s and∆t are the length of the unloaded suspension spring and of the tire. Finally,c(t) andcin(t)
are the actual and requested damping coefficients of the passive shock-absorber. In order to simplify
the computations we assume thatη is large enough so thatc(t) ∼ cin(t). Moreover we consider a
genuine switching strategy, so thatc(t) = ci can assume only two values, namelyc1 = cmin≥ 0 and
c2 = cmax> c1, to be specified later on.

The control objective consists in minimizing the chassis vertical accelerationξ̈ (t) by a suitable choice
of the control variablec(t) ∈ {cmin, cmax}. In the classical two-state SH approach [43], the system is
switched according to the sign ofξ̇ (t)(ξ̇ (t)− ξ̇t(t)). In order to fit this example in the framework of
the present paper, let us take the variationsδξ (t) andδξt(t) of ξ (t) andξt(t) around an equilibrium
point associated with zero road profile, arriving to the system

M ¨δξ (t) = −ci( ˙δξ (t)− ˙δξ t(t))−k(δξ (t)−δξ t(t)) (4.36)

m ¨δξ t(t) = ci(δ̇ ξ (t)− δ̇ ξ t(t))+k(δξ (t)−δξ t(t))−kt(δξ t(t)−ξr(t)) (4.37)

Notice that this is a2-DOF system. In order to apply the optimal switching control design previously
discussed, we make the (realistic) assumption thatkt is sufficiently high so that the displacement of
the tire can be approximated by the road profile, i.e.δξt(t) ' ξr(t). Consequently, lettingy(t) =
δξ (t)−ξr(t), the approximated model can be written as

ÿ(t) =− ci

M
ẏ(t)− k

M
y(t)+ ξ̈r(t)

Thus, we have recovered equation (4.26) withαi = ci/M, β j = β = k/M andw(t) = ξ̈r(t). Moreover,
to improve comfort, it is advisable to minimize the integral ofÿ(t)2. The situation is exactly the
one discussed in Section 4, and, consequently, the optimal switching surfaces are those qualitatively
depicted in Figure 1. The following parameters have been selected, see [29]:M = 400kg, m= 50kg,
k = 2.0×104N/m, kt = 2.5×105N/m, c1 = cmin = 3.0×102Ns/m andc2 = cmax= 3.9×103Ns/m.
The optimal switching angle has been computed on the basis ofαmax andβ through the numerical
algorithm of Section 3 withN = 500grid points. It turns outθ ? = 86.6o.

Two sets of simulations have been carried out, by applying both the Sky-Hook (SH) and the optimal
switching (OS) control laws to the2-DOF system (4.36), (4.37). The first set of simulations refers to
the response to a unit impulse on the road accelerationw(t), namely a ramp on the road profile. The first
row of Table 1 reports the integral of the squared chassis acceleration obtained with different control
strategies. The notation PS1 and PS2 refers to a passive suspension with fixed damping coefficient
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OS SH PS1 PS2

∫ ∞
0 ÿ(t)2dt for ξ̈r = δ (t) 7.446 8.288 26.548 8.307

∫ 20
0 ÿ(t)2dt∫ 20
0 ξ̈r (t)2dt

for ξ̈r ∼WN 0.623 0.787 3.558 0.719

Table 4.1: Performance of the different control strategies under an impulsive or a white noise distur-
bance
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Figure 4.10: Time history of the integral ofÿ(t)2 due to an impulse of̈ξr(t)

equal tocmin andcmax, respectively. As apparent from Table 1, the algorithmOSoutperforms all other
strategies.

Figure 4.10 shows the integral of the square of the chassis acceleration against time. It can be seen that
OS is capable of lowering the acceleration in the transient better than SH, even if its design is based
on a simplified1-DOF model.

In the second set of simulations the road profileξr(t) has been generated as the double integral of
a sample realization of a white noise process with powerχ2 = 0.1. The performance of the four
algorithms above has been measured as the power attenuation on the chassis acceleration, namely the
ratio

ΘT =
∫ T

0 ÿ(t)2dt
∫ T

0 ξ̈r(t)2dt

This value, forT = 20 sec., is reported in the second row of Table 1. Figure 4.11 shows the behavior
of the acceleration. The plot has been restricted to an interval of 2 seconds, in order to better represent
the effects of the commutations. TheOS strategy outperforms SH at the price of faster switching
commutation and shorter dwell intervals.

Finally the power attenuationΘT as a function ofT is plotted in Figure 4.12.
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Figure 4.11: Chassis acceleration during a short interval under a random road profile
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Chapter 5

Output feedback control

5.1 Preliminaries

Consider linear switched systems of the following form

ẋ(t) = Aσ(t)x(t)+Bw(t) (5.1a)

y(t) = Cσ(t)x(t)+Dw(t) (5.1b)

z(t) = Eσ(t)x(t) (5.1c)

which evolves from zero initial condition. The vectorsx(t) ∈ Rn, w(t) ∈ Rm, y(t) ∈ Rp andz(t) ∈ Rq

denote the state, the exogenous disturbance, the measured output and the controlled output variables,
respectively. The switching signal is represented by a functionσ(t) defined as

σ(t) : t ≥ 0→ N := {1,2, · · · ,N} (5.2)

making clear that at each instant of timet ≥ 0 one and only one amongN known linear systems defined
by matrices

Si :=




Ai B
Ci D
Ei 0


 , ∀i ∈ N (5.3)

are switched on. To ease presentation we have considered that the controlled variablez(t) does not
depend directly on the external disturbancew(t). Certainly, based on the results provided here, the
reader does not have difficulty to treat more general situations.
Assuming thatw(t) is an impulse disturbance (to be precisely defined afterwards) and that a quadratic
cost functionalJ(σ), as in equation (1.3), is given, the purpose of this paper is to design an output
feedback control law of the form

σ(t) = u(y(τ) , ∀τ ≤ t) (5.4)

in such a way that the originx = 0 is a globally asymptotically stable equilibrium point. Moreover,
a quantitative measure on the quality of the proposed policy (5.4) with respect to the optimal one is
provided. This last requirements in given in terms of a lower and an upper boundJin f andJsup such
that

Jin f ≤ inf
σ∈S

J(σ)≤ J(u)≤ Jsup (5.5)

whereS defines the set of stabilizing switching rules. This last point is of particular importance since
as it is largely recognized, the determination of the optimal policy and consequently the correspondent

55
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minimum costinfσ∈N J(σ) is extremely hard even for linear switched systems constituted by a small
number of linear systems of low order. This problem will be tackled in more details in Chapter4. Now
consider again the switched autonomous system

ẋ(t) = Aσ(t)x(t) (5.6)

and the switching rule
u(x) := argmin

i∈N
x′Pix (5.7)

wherePi are suitable positive definite matrices. The next, results, already introduced in Chapter3,
provides an upper bound for the optimal cost.

Theorem 10 Let Qi ≥ 0, i ∈ N be given. The following statements are true : If there exist a set of
positive definite matrices{P1, · · · ,PN} andΠ ∈Mc satisfying the Lyapunov-Metzler inequalities

A′iPi +PiAi +
N

∑
j=1

π ji Pj +Qi < 0 (5.8)

for all i ∈ N then the state feedback switching controlσ(t) = u(x(t)) makes the equilibrium solution
x = 0 of (5.6) globally asymptotically stable and

∫ ∞

0
x(t)′Qσ(t)x(t)dt ≤ v(x0) (5.9)

As for a lower bound, the following result can be stated.

Theorem 11 Let Qi ≥ 0, i ∈ N be given and define the functionV(x) := maxi∈N x′Pix. The following
statements are true : If there exist a set of positive definite matrices{P1, · · · ,PN} andΠ∈Mc satisfying
the inequalities

A′jPi +PiA j +
N

∑
k=1

πkiPk +Q j ≥ 0 (5.10)

for i, j ∈ N×N then the following lower bound holds

inf
σ∈S

∫ ∞

0
x(t)′Qσ(t)x(t)dt ≥V(x0) (5.11)

Proof The proof of parta) follows from the determination of the Dini derivative of functionV(x(t))
along any trajectory of (5.6). Considering the setI(x) := {i : V(x) = x′Pix, i ∈ N} andσ = j ∈ N
arbitrary, making use of (5.10) we obtain

V̇+(x) = max
l∈I(x)

x′(A′σ Pl +Pl Aσ )x

≥ x′(A′jPi +PiA j)x

≥ −x′Q jx−
N

∑
k=1

πkix
′Pkx

≥ −x′Q jx (5.12)

where we have used the fact thatx′Pix≥ x′Pkx for all k∈ N and thatΠ ∈Mc. ConsequentlẏV+(x)+
x′Qσ x≥ 0 for all (x,σ) ∈ Rn×N, which by integration from zero to infinity yields the desired result
(5.11) since the optimal trajectory satisfiesx(0) = x0 andx(∞) = 0.

Theorem 11 allows an useful interpretation on the existence of an optimal control policy. Inequalities
(5.10) are always feasible whenQi > 0 for all i ∈ N as it can be readily verified withPi → 0. On the
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other hand, if (5.10) admits un unbounded feasible solution then the lower boundV(x0)→+∞ and we
can conclude that the optimal control problem (5.11) does not admit a stabilizing solution. To prevent
this undesirable situation let us considerν > 0∈ Λ the eigenvector associated to the null eigenvalue
of Π ∈Mc andλ ∈ Λ. Multiplying (5.10) successively byνi > 0 andλ j ≥ 0 and summing up for all
i, j ∈ N×N we obtain

A′λ Pν +PνAλ +Qλ ≥ 0 (5.13)

Hence, assuming that there existsλ ∈ Λ such thatAλ is asymptotically stable, the inequality (5.10)
implies that

N

∑
i=1

νiPi ≤
∫ ∞

0
eA′λ tQλ eAλ tdt (5.14)

Since the right hand side of (5.14) is bounded, the conclusion is that the lower bound of the optimal
cost (5.11) is bounded as well. Moreover, it is important to remember that under the same condition,
that is, the existence of an asymptotically stable convex combination, from Theorem 6 the Lyapunov-
Metzler inequalities admit a solution providing thus a stabilizing control and an upper bound to the
optimal cost. In the next section these results are generalized to cope with the more general models for
switched linear systems given in (5.1).

5.2 Closed Loop Performance

In this section, the following version of the switched linear system (5.1) is considered where, for the
moment, the output variable is not taken into account. Assume that

ẋ(t) = Aσ(t)x(t)+Bw(t) (5.15a)

z(t) = Eσ(t)x(t) (5.15b)

evolves from zero initial condition and thatσ(x) is a stabilizing switching state feedback control. For
eachk = 1, · · · ,m an exogenous input of the formw(t) = ekδ (t) whereek ∈ Rm is thekth column of
the identity matrixIm is applied and the corresponding controlled output is obtained. Based on this,
we define the following cost functional associated to the stabilizing control policyσ(x) as being

J(σ) :=
m

∑
k=1

‖zk‖2
2 (5.16)

The interpretation of this cost steams from the fact that for a fixed stabilizing control policyσ(x), any
trajectory of (5.15) with zero initial condition andw(t) = ekδ (t) is alternatively provided by the same
equations subject to the initial conditionx(0) = Bek and inputw(t) = 0. This fact is also important to
make clear that matrixB in (5.15a) can be considered, with no loss of generality, independent ofσ ∈N.
Indeed, if the input matrix were dependent on the switching policy then the initial condition would be
x(0) = Bσ(0)ek, with Bσ(0) being a fixed matrix for allk = 1, · · · ,m. Hence, the results obtained so
far can be applied to get lower and upper bounds to the optimal cost (5.16) for both continuous and
discrete time cases.

Theorem 12 Consider the switched linear system (5.15) with zero initial condition and defineQi :=
E′i Ei for all i ∈ N. If there exist a set of positive definite matrices{P1, · · · ,PN} and Π ∈ Mc (Md)
satisfying the inequalities (5.8) then the switching control strategyσ(t) = u(x(t)) given in (5.7) is such
that

J(σ)≤min
i∈N

Tr(B′PiB) (5.17)
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Proof It follows from Theorem 10. Indeed, considering successively the initial conditionx(0) = Bek

andw(t) = 0 we have

J(σ) ≤
m

∑
k=1

min
i∈N

(Bek)′Pi(Bek)

≤ min
i∈N

m

∑
k=1

(Bek)′Pi(Bek)

≤ min
i∈N

Tr(B′PiB) (5.18)

which proves the proposed theorem.

In contrast to the result provided by Theorem 10 where the performance of each control policy was
dependent on the initial statex0 ∈Rn, Theorem 12 shows how to associate an unique stabilizing policy
to a series of impulse-type perturbations applied to each external input channel. The consequence is
somewhat similar to that observed in the classicalH2 Theory of LTI systems where the control policy
is effective to deal with perturbations of a wide frequency range acting on each input channel. In the
next theorem the same reasoning is applied to lower bound calculations.

Theorem 13 Consider the switched linear system (5.15) with zero initial condition and defineQi :=
E′i Ei for all i ∈ N. If there exist a set of positive definite matrices{P1, · · · ,PN} and Π ∈ Mc (Md)
satisfying the inequalities (5.10), then the following lower bound holds

inf
σ∈N

J(σ)≥max
i∈N

Tr(B′PiB) (5.19)

Proof Considering successively the initial conditionx(0) = Bek andw(t) = 0, Theorem 11 yields

inf
σ∈N

J(σ) ≥
m

∑
k=1

max
i∈N

(Bek)′Pi(Bek)

≥ max
i∈N

m

∑
k=1

(Bek)′Pi(Bek)

≥ max
i∈N

Tr(B′PiB) (5.20)

which proves the proposed theorem.

The numerical determination of the upper and lower bounds of the optimal switching policy is involved
and costly. The main difficulty is concentrated on the determination of the Metzler matrixΠ ∈ RN×N

which certainly requires further research efforts. For the moment this difficulty is circumvented by
replacing the search for a Metzler matrix by the determination of a scalarγ, as indicated in Corollary
7. This approach certainly introduces some conservativeness on the calculation of the final bounds but
is numerically efficient. However, forΠ ∈ RN×N fixed, the associated lower and upper bounds follow
from the solution of convex programming problems. Indeed, the minimization of the right hand side
of (5.17) written as

min
i∈N
{ min

P1,··· ,PN∈Φ(Π)
Tr(B′PiB)} (5.21)

whereΦ(Π) is the convex set of all positive definite matricesPi , i ∈ N satisfying the LMIs (5.8) for
some fixed Metzler matrixΠ ∈ RN×N, shows that the matricesPi , i ∈ N can be calculated from the
internal minimization for eachi ∈ N and afterwards those correspondent to the minimum cost are
selected. Similar reasoning can be applied to get the maximum lower bound. The next example
illustrates the results obtained so far.
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Figure 5.1: Upper and Lower bounds.

Example 4 Consider a continuous time switched linear system (5.15a)-(5.15b) defined by the follow-
ing matrices

A1 =




0 1 0
0 0 1

−2 −2 0


 , A2 =




0 1 0
0 0 1
0 −2 −2


 , B =




1 0
−1 −1

0 1


 (5.22)

which are not stable but admit a stable convex combination. MatricesQ1 = diag{1,1,2} and Q2 =
diag{2,1,1} define the associated costJ(σ) given in (5.16). With a Metzler matrix of the form

Π =
[ −p q

p −q

]
∈Mc (5.23)

we have determined from Theorem 12 and Theorem 13 lower and upper bounds for60≤ p≤ 100and
10≤ q≤ 100. Figure 2.4 shows that the lower bound is almost insensitive to the particular value
of the Metzler matrix. The same, of course, does not hold for the upper bound. Notice also that a
convenient choice of the Metzler matrix provides precise estimation of the interval where the optimal
solution ofinfσ∈N J(σ) belongs to. For instance, forp = 100andq = 20we obtainJin f = 4.2500and
Jsup= 4.7158which corresponds approximately to a gap between the lower and upper bound of about
10%.

5.3 Output Feedback Control

In this section the main control problem reported in this paper is solved. It consists on the design of a
stabilizing full order output feedback controller which minimizes the upper bound of the cost function
J(σ) introduced in the previous section. To this end, the model (5.1) given again for convenience, is
considered

ẋ(t) = Aσ(t)x(t)+Bw(t) (5.24a)

y(t) = Cσ(t)x(t)+Dw(t) (5.24b)

z(t) = Eσ(t)x(t) (5.24c)

where the switching policy is of the form (5.4) since the switching strategy must be dependent only
on the available measurements. The functionu(·) is indeed a functional ofy(·) in the sense thaty(t)
is viewed as the input of the following switched linear filter that rules out the change of the switching
index. Introducing the full order switched filter

˙̂x(t) = Âσ(t)x̂(t)+ B̂σ(t)y(t) (5.25)
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with zero initial condition, where(Âi , B̂i), i = 1,2, · · · ,N are matrices to be determined, putting (5.24)
and (5.25) together we obtain

˙̃x(t) = Ãσ(t)x̃(t)+ B̃σ(t)w(t) (5.26a)

z(t) = Ẽσ(t)x̃(t) (5.26b)

wherex̃′ = [x′ x̂′] ∈ R2n and

Ãi =
[

Ai 0
B̂iCi Âi

]
, B̃i =

[
B

B̂iD

]
, Ẽi =

[
Ei 0

]
(5.27)

which evolves from zero initial condition. Therefore the solution of the stated output feedback switch-
ing control design problem requires the determination of the switched filter matricesÂi andB̂i for all
i ∈ N and a switching policy, such that the enlarged switched linear system (5.26) is asymptotically
stable. However, in doing so, only switching rules that depend exclusively onx̂(·) are permitted. In
order to apply the results of the previous section, we limit the search for a solution of the Lyapunov-
Metzler inequalities with a prescribed structure so as to structurally incorporate switching rules that
depends only on the available information. Therefore, let

P̃i =
[

X V
V ′ X̂i

]
, detV 6= 0 (5.28)

for all i ∈N and notice thatargmini∈N x̃′P̃i x̃= argmini∈N x̂′X̂i x̂. Hence, to fulfill our purposes, we need
to find a stabilizing rule of the formσ(t) = u(x̂(t)) where

u(x̂) = arg min
i∈N

x̂′X̂i x̂ (5.29)

In the sequel the goal is to determine a filter and a switching policy of the form (5.29) such that the
upper bound of cost functionalJ(σ) provided by Theorem 12 is minimized. To ease the presentation
we denote byQ̃i := Ẽ′i Ẽi ∈ R2n×2n andQi := E′i Ei ∈ Rn×n for all i ∈ N.

Considering the augmented switched linear system (5.26), from Theorem 12 it is seen that if there
exist a Metzler matrixΠ ∈Mc, positive definite matrices̃Pi of the form (5.28) and the filter matrices
Âi andB̂i for all i ∈ N satisfying the Lyapunov-Metzler inequalities

Ã′iP̃i + P̃iÃi +
N

∑
j=1

π ji P̃j + Q̃i < 0 (5.30)

for i ∈ N then the switching control (5.29) makes the equilibrium solutionx = 0 of (5.26a) globally
asymptotically stable with the associated cost

J(u) = min
i∈N

Tr(B̃′`P̃iB̃`) (5.31)

where` = σ(0) ∈ N is fixed and supposed to be provided by the designer. However, with no great
difficulty, it can be determined by minimizing the associated cost whenever desired. The next theorem
gives a complete solution to the output feedback switching control design problem stated before.

Theorem 14 There exist matriceŝAi andB̂i , i ∈ N for which inequalities (5.30) are satisfied for some
positive definite matrices̃Pi of the form (5.28) if and only if there exist a Metzler matrixΠ ∈Mc, a
positive definite matrixX, a set of positive definite matrices(Zi ,Ri j ) and a set of matricesLi for all
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i, j ∈ N×N, such that the following matrix inequalities

A′iZi +ZiAi +
N

∑
j=1

π ji Ri j +Qi < 0 (5.32a)

A′iX +XAi +C′i L
′
i +LiCi +Qi < 0 (5.32b)

Rii < Zi ,

[
Ri j −Z j Z j −Zi

• X−Z j

]
> 0, i 6= j (5.32c)

hold. Moreover, assuming that inequalities (5.32a)-(5.32c) are satisfied, the output feedback switching
control σ(t) = u(x̂(t)) defined by

u(x̂) = arg min
i∈N

x̂′V ′(X−Zi)−1Vx̂ (5.33)

whereV is an arbitrary nonsingular matrix, makes the equilibrium solutionx = 0 of (5.26a) globally
asymptotically stable and the associated cost is given byJ(u) = mini∈NTr(Wi) where the linear matrix
inequality 


Wi B′Zi B′X +D′L′`
• Zi Zi

• • X


 > 0 (5.34)

holds for all i ∈ N.

Proof Consider symmetric matrices̃Pi ∈ R2n×R2n for all i ∈ N of the form (5.28), that is

P̃i =
[

X V
V ′ X̂i

]
, detV 6= 0 (5.35)

and define the nonsingular matricesT̃i ∈ R2n×R2n as

T̃i =
[

In In
−X̂−1

i V ′ 0

]
(5.36)

for all i ∈N. Therefore, there exist positive definite matricesP̃i , i ∈N satisfying the Lyapunov-Metzler
inequalities (5.30) if and only if

S̃i := T̃ ′i

(
Ã′iP̃i + P̃iÃi +

N

∑
j=1

π ji P̃j + Q̃i

)
T̃i < 0 (5.37)

for all i ∈ N. Introducing a new one-to-one set of variables, namely

Zi := X−VX̂−1
i V ′ (5.38)

Li := VB̂i (5.39)

Mi := VÂiV
−1(X−Zi) (5.40)

each term of the matrix sum appearing in the left hand side of inequality (5.37) can be expressed as
follows

T̃ ′i P̃iÃiT̃i =
[

ZiAi ZiAi

XAi +LiCi −Mi XAi +LiCi

]
(5.41)

T̃ ′i

(
N

∑
j=1

π ji P̃j

)
T̃i =

N

∑
j=1

π ji

[
Z j +(Z j −Zi)(X−Z j)−1(Z j −Zi) 0

0 0

]
(5.42)
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T̃ ′i Q̃iT̃i =
[

Qi Qi

Qi Qi

]
(5.43)

where we have used the fact that, from (5.38) we haveX̂i = V ′(X−Zi)−1V and thatΠ ∈Mc. Using
the Schur Complement to (5.35) it is seen thatP̃i > 0 if and only if X > Zi > 0 which indicates that̂Xi

is well defined. Hence definingYi j := Z j +(Z j −Zi)(X−Z j)−1(Z j −Zi) for all i, j ∈ N×N we obtain

S̃i =
[

A′iZi +ZiAi +∑N
j=1 π jiYi j +Qi •

A′iZi +XAi +LiCi +Qi −Mi A′iX +XAi +LiCi +C′i L
′
i +Qi

]
(5.44)

Let us assume that inequalities (5.32a)-(5.32c) are satisfied. Since the linear matrix inequalities (5.32c)
imply that X > Z j > 0 for all j ∈ N, selecting any nonsingular matrixV ∈ Rn×n and settingX̂i =
V ′(X−Zi)−1V we getP̃i > 0 for all i ∈ N. In addition, applying the Schur Complement to (5.32c)
it is immediately verified that∑N

j=1 π ji Ri j > ∑N
j=1 π jiYi j so that the first block diagonal element ofS̃i

is negative definite as a consequence of (5.32a). Due to (5.32b), the second block diagonal element
of matrix S̃i is also negative. Consequently, imposingMi = A′iZi + XAi + LiCi + Qi we conclude that
S̃i < 0. Hence, determining the switched filter matricesB̂i andÂi from (5.39) and (5.40) the augmented
Lyapunov-Metzler inequalities (5.30) hold.

Vice-versa, assume that the inequalities (5.30) hold for some positive definite matrixP̃i of the
form (5.28) and matriceŝBi , Âi of the switched filter. Adopting the change of variables introduced in
equations (5.38)-(5.40) it is immediately verified thatS̃i < 0 for all i ∈N. As a consequence, the linear
matrix inequalities (5.32b) are verified. On the other hand, lettingRii = Yii − εIn andRi j = Yi j + εIn
with ε > 0 small enough, the linear matrix inequalities (5.32c) are verified and inequalities (5.32a)
hold due to the fact that the first block diagonal element ofS̃i is negative definite.

To conclude the proof notice that the stabilizing property of the output feedback switching rule
(5.33) is a consequence of Theorem 12 and the determination of matricesX̂i for all i ∈ N, as in-
dicated before. Once again, from Theorem 12 the cost associated to this control policy isJ(u) =
mini∈NTr(B̃′`P̃iB̃`) which can be rewritten asJ(u) = mini∈NTr(Wi) with the additional matrix variable
Wi satisfyingWi > B̃′`P̃iB̃` for all i ∈ N. Using the Schur Complement, the equivalent inequalities

[
Wi B̃′`P̃i T̃i

• T̃ ′i P̃i T̃i

]
> 0 (5.45)

for all i ∈ N provide (5.34). This concludes the proof of the proposed theorem.

WheneverΠ ∈Mc is fixed, the matrix inequalities (5.32) and (5.34) reduces to LMIs and so can be
solved with no difficulty by the machinery available in the literature to date. Another possibility is to
restrict the set of Metzler matrices to those with the same diagonal elements. In this case, Theorem 7
applies from which a simplified version of Theorem 14, expressed by LMIs and an additional scalar,
follows. CallingΦ(Π) the set of all variables satisfying the LMIs (5.32) and (5.34), the determination
of the best output feedback switching control is done from the solution of the optimization problem

min
i∈N
{ min

Zi ,Ri j ,Li ,Wi ,X∈Φ(Π)
Tr(Wi)} (5.46)

where the inner problem is convex. Once it is solved for eachi ∈N, the global (discrete) minimization
with respect toi ∈ N is then performed. Since the index` = σ(0) may be defined by the designer, it
can be involved in the optimization process. However, keeping in mind problem (5.46) it appears that
a good choice would bè= i ∈ N being thus determined by the outer optimization problem.
After the determination of the involved matrix variables, the filter matrices are readily calculated from
the simple formulas

B̂i = V−1Li (5.47a)

Âi = V−1Mi(X−Zi)−1V (5.47b)
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whereMi := A′iZi + XAi + LiCi + Qi for all i ∈ N. At this point it is clear that the nonsingular matrix
V defines a particular state space realization of the switched linear filter making invariant the output
feedback switching rule. In other words, Theorem 14 provides a parametrization of all feasible filters
with P̃i for all i ∈ N presenting the prescribed block structure (5.28).
The full-order filter is not in the observer form, i.e.̂Ai 6= Ai − B̂iCi . To recover this condition, an
additional constraint, unfortunately non linear, has to be added (the simple check is left to the reader)

Mi = (VAi −LiCi)V−1(X−Zi)
= A′iZi +XAi +LiCi +Qi (5.48)

A notable exception can be devised by lettingQi = 0, so overlooking the cost associated to the con-
trolled output variablez(t),∀t ≥ 0. Indeed, in this particular but important case, we have the following
result.

Corollary 3 Assume that there exist a Metzler matrixΠ ∈Mc, a positive definite matrixX, a set of
positive matricesZi and a set of matricesLi for all i ∈ N, such that the following matrix inequalities

A′iZi +ZiAi +
N

∑
j=1

π ji Z j < 0 (5.49a)

A′iX +XAi +C′i L
′
i +LiCi < 0 (5.49b)

are satisfied. The output feedback switching controlσ(t) = u(x̂(t)) defined by

u(x̂) = arg min
i

x̂′Zi x̂ (5.50)

makes the equilibrium solutionx = 0 of (5.26a) globally asymptotically stable wherex̂(t) satisfies the
differential equation of the filter (5.25) in observer form with

B̂i = −X−1Li (5.51a)

Âi = Ai − B̂iCi (5.51b)

Proof The proof relies to Theorem 14, by lettingZi → εZi with ε > 0 arbitrarily small andV = −X
yielding Ri j → Z j for all i, j ∈ N×N. Indeed, notice that the condition (5.48) for the filter to be in
observer form is satisfied forε going to zero and that

arg min
i∈N

x̂′V ′(X− εZi)−1Vx̂ =

arg min
i∈N

x̂′(X +(Z−1
i /ε−X−1)−1)x̂∼

arg min
i∈N

x̂′εZi x̂∼ arg min
i∈N

x̂′Zi x̂ (5.52)

holds.

The conclusion is that if there exist N gains that make the filter quadratically stable, see equation
(5.49b), then the usual solution to the Metzler-Lyapunov inequalities (see the state feedback, equation
(5.49a)) provides an output feedback stabilizing switching rule calculated from the state variable of the
observer. It is important to keep in mind that if we want to determine a switching strategy by minimiz-
ing the costJ(u) then this solution although stabilizing is not the best that can be done. Moreover, it
should be noticed that the output feedback strategies invoked by the theorems presented so far require
the existence of state-observer injection matricesL̂i = X−1Li , i ∈ N that render the set of matrices
Ai + L̂iCi quadratically stable (see e.g. equation (5.49a)).
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Figure 5.2: Time simulation.

Remark 2 It is important to stress that there is no difficulty to get the version of Theorem 14 asso-
ciated to the modified Lyapunov-Metzler inequalities appearing in Theorem 7. The bilinear matrix
inequalities are replaced by LMIs with an additional parameter that can be determined by line search.
The results follow the same pattern of each mentioned theorem and corollary, being thus omitted.

Example 5 Consider a continuous time switched linear system (5.24a)-(5.24c) defined by matrices
A1, A2, Q1, Q2 andB given in Example 4. We have consideredD = [1 1] and different measurements
for each one of the two modes defined byC1 = [1 −1 0] andC2 = [1 0 0]. The Metzler matrix has been
set as

Π =
[ −100 20

100 −20

]
∈Mc (5.53)

The optimal filter and the associated output feedback switching control have been determined from the
solution of the convex programming problem (5.46) with` = i ∈ N, yieldingJ(u) = 12.9725. Each
subplot in Figure 5.2 shows in solid line the time evolution of the state variables of the system and in
dashed line the time evolution of the state variables of the filter. Fromt ∈ [0,10) we have imposed the
constant output switching controlσ(t) = 1. It is clear that both the system and the filter are unstable.
At t = 10 the output feedback switching control is connected and the closed loop system (and the filter)
converge to zero, showing that the proposed control is actually effective for stabilization.

5.4 Practical Application

This section discusses a practical application of the output feedback switching control design presented
in Section4.3.3. The problem consists in the design of a switching control strategy for comfort-
oriented semi-active suspensions in road vehicles, and is motivated by the paper [43] where the so-
called sky-hook (SH) approach is introduced and the recent paper [29], where a new strategy, hence-
forth referred to as ADD (Acceleration Driven Damper) strategy, is proposed that improves on SH in
certain frequency ranges of the road profile disturbance. The model is as follows:

Mξ̈ (t) = −c(t)(ξ̇ (t)− ξ̇t(t))−k(ξ (t)−ξt(t))+k∆s−Mg

mξ̈t(t) = c(t)(ξ̇ (t)− ξ̇t(t))+k(ξ (t)−ξt(t))−kt(ξt(t)−ξr(t))−k∆s+kt∆t −mg

ċ(t) = −βc(t)+βcin(t)

whereξ (t), ξt(t) and ξr(t) are the vertical position of the body, the unsprung mass and the road
profile, respectively. The coefficientsM andm are the quarter-car body mass and the unsprung mass
(tire, wheel, brake, etc...), respectively. The coefficientsβ ,k andkt are the bandwidth of the active
shock absorber, the stiffness of the suspension spring and of the tire, respectively. The coefficients∆s
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and∆t are the length of the unloaded suspension spring and of the tire. Finally,c(t) andcin(t) are
the actual and requested damping coefficients of the passive shock-absorber. In order to simplify the
computations we assume thatβ is large enough so thatc(t)∼ cin(t). Moreover we consider a genuine
switching strategy, so thatc(t) can assume only two values, namelycmin andcmax, to be specified later
on.
The control strategy consists in minimizing the chassis vertical accelerationξ̈ (t) by a suitable choice
of the control variablec(t) ∈ {cmin, cmax}. In the classical two-state SH approach [43], the system is
switched according to the sign ofξ̇ (t)(ξ̇ (t)− ξ̇t(t)), whereas in [29] the switching law depends on the
sign of ξ̈ (t)(ξ̇ (t)− ξ̇t(t)).
In order to fit this example in the framework of the present paper, let us take the variationsδξ (t) and
δξt(t) of ξ (t) andξt(t) around an equilibrium point associated with zero road profile, arriving to the
system

¨̄ξ (t) = Aσ ξ̄ (t)+Brξr(t)
y(t) = Cσ ξ̄ (t)+d(t)
z(t) = Eσ ξ̄ (t)

whered(t) is the measurement noise and

A1 =




0 1 0 0
−k/M −cmin/M k/M cmin/M

0 0 0 1
k/m cmin/m −(k+kt)/m −cmin/m




A2 =




0 1 0 0
−k/M −cmax/M k/M cmax/M

0 0 0 1
k/m cmax/m −(k+kt)/m −cmax/m




E1 =
[ −k/M −cmin/M k/M cmin/M

]

E2 =
[ −k/M −cmax/M k/M cmax/M

]

Br =




0
0
0

kt/m




andCσ depends on the choice of the measured variable. The state vectorξ̄ (t) contains the chassis dis-
placementδξ (t), its derivative, the tire displacementδξt(t) and its derivative. Again, the disturbance
vectorξr(t) is the road profile. One reasonable set of measurements is given by the strokeξ (t)−ξt(t)
and its derivative, leading two

C1 = C2 =
[

1 0 −1 0
0 1 0 −1

]
(5.54)

We also consider the alternative choice

C1 =
[ −k/M −cmin/M k/M cmin/M

0 1 0 −1

]
(5.55)

C2 =
[ −k/M −cmax/M k/M cmax/M

0 1 0 −1

]
(5.56)

that corresponds to measuring the body acceleration and the stroke derivative.
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In the following we apply the state-feedback and output feedback stabilization strategy to the suspen-
sion system in order to minimize theL2 norm of the chassis accelerationξ̈ (t) with respect to impulsive
signals on the road profile accelerationξ̈r(t). This is indeed a realistic situation including road profiles
described by ramps, in the deterministic setting, or double integral of a white noise, in the stochastic
case.
Consequently, we have to rewrite the model in order to fit in the formulation given in (5.24a)-(5.24c),
in which

w(t) =
[

ξ̈r(t)
d(t)

]

andz(t) = ξ̈ (t). To do that, define

x1(t) = ξ (t)−ξr(t)
x2(t) = ξ̇ (t)− ξ̇r(t)
x3(t) = ξt(t)−ξr(t)
x4(t) = ξ̇t(t)− ξ̇r(t)

With these new variables, the system can be equivalently rewritten as

ẋ(t) = Aσ x(t)+Bw(t) (5.57)

y(t) = Cσ x(t)+Dw(t)+Cσ (ξ̄ (t)−x(t)) (5.58)

z(t) = Eσ x(t)+Eσ (ξ̄ (t)−x(t)) (5.59)

whereA1,A2,C1,C2,E1,E2 have been already defined and

B =




0 0 0
−1 0 0
0 0 0
−1 0 0


 , D =

[
0 r1 0
0 0 r2

]

The parametersr1 andr2 reflect the measurements uncertainties and are specified later.
Notice now thatEσ (ξ̄ (t)−ξ (t)) = 0 andCσ (ξ̄ (t)−ξ (t)) = 0, for eachσ = 1,2 and both choices of
the output matrices indicated in (5.54)-(5.56). Therefore system (5.57)-(5.59) is identical to (5.24a)-
(5.24c). The output feedback stabilization problem has been solved by taking the following set of
parameters:M = 400kg, m= 50kg, k = 2.0×104N/m, kt = 2.5×105N/m, cmin = 3.0×102Ns/mand
cmax= 3.9×103Ns/m. For these parameters the two matricesA1 andA2 are both stable (although with
poorly damped oscillating modes) hence, our main scope here is to improve the transient dynamical
behavior of the system by minimizing the vertical acceleration of the chassis.
Two sets of simulations have been carried out. The first set refers to the response ofξ̈ (t) to a unit im-
pulse on the road accelerationξ̈r(t). The first row of Table 1 reports the integral of the squared chassis
acceleration obtained with different control strategies. The symbols in the table have the following
meaning:

• OF1 : Output feedback switching control designed with the output matrices of equation (5.54).

• OF2 : Output feedback switching control designed with the output matrices of equations (5.55)-
(5.56).

• SF : State-feedback switching control.

• SH : Two-state sky-hook strategy.
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OF1 OF2 SF SH ADD PS1 PS2

∫ ∞
0 ξ̈ (t)2dt for ξ̈r(t) = δ (t) 7.767 7.835 7.721 8.288 8.150 26.548 8.307

∫ T
0 ξ̈ (t)2dt∫ T
0 ξ̈r (t)2dt

for T = 20 0.718 0.697 0.643 0.787 0.823 3.558 0.719

Table 5.1: Performance of closed loop strategies
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Figure 5.3: Time history of the integral ofξ̈ (t)2 due to an impulse of̈ξr(t).

• ADD : Acceleration-driven damper strategy with sampling periodδT = 10−3sec.

• PS1 : Passive suspension with fixed damping coefficient equal tocmin.

• PS2 : Passive suspension with fixed damping coefficient equal tocmax.

The designOF1 andOF2 depend on the tuning parametersr1, r2 andΠ, that have been optimized
after a limited number of trials. The resulting tuning parameters inOF1 are

r1 = 0.1, r2 = 0.5, Π =
[ −1000 1000

1000 −1000

]

and inOF2 are

r1 = 2.0, r2 = 0.5, Π =
[ −100 10

100 −10

]

Finally, the parameterΠ for SF has been selected as inOF1. As apparent from Table 1, the algorithm
OF1 outperforms all other strategies based on incomplete measurements. Remarkably, the difference
between the outcomes ofOF1 and SF is relatively small. By the way, the state-feedback performance
is quite close to that obtained by applying the theoretical optimal switching strategy corresponding to
kt → ∞, see [42].
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Figure 5.4: Chassis acceleration during a short interval under a random road acceleration.

Figure 5.3 shows the integral of the square of chassis acceleration against time. It can be seen that
OF1 is capable of lowering the acceleration in the transient better than the other methods.

In the second set of simulations the road profileξr(t) has been generated as the double integral
of a sample realization of a white noise process with powerχ2 = 0.1. The performance of the seven
algorithms above, with the same values of the tuning parameters, has been measured as the power
attenuation on the chassis acceleration, namely the ratio

ΘT =
∫ T

0 ξ̈ (t)2dt
∫ T

0 ξ̈r(t)2dt

This value, forT = 20 sec., is reported in the second row of Table 1. The relative ranking of the
proposed algorithms is in good agreement with the indices shown before, the only difference being the
slight improvement ofOF2 with respect toOF1.
Figure 5.4 shows the behavior of the acceleration for the three methodsOF2, SH and ADD. The plot has
been restricted to an interval of 2 seconds, in order to better represent the effects of the commutations
in the three methods. TheOF2 strategy outperforms the other two algorithms at the price of faster
switching commutation and shorter dwell intervals.

Finally the power attenuationΘT as a function ofT is plotted in Figure 5.5 to show the effectiveness
of the proposed output feedback strategy.
Obviously, the choice of the design parameters (in particularΠ) is still an open issue. As a reasonable
guideline, one could exploit the performance bounds discussed in Section 4.3.2 and 5.3. However, it
must be stressed that the optimization of the upper bounds with respect toΠ does not ensure that the
minimum of the real performance is attained.
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Figure 5.5: Power attenuation under a random road acceleration.
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